Cargando…
Towards Deep Neural Network Models for the Prediction of the Blood–Brain Barrier Permeability for Diverse Organic Compounds
Permeation through the blood–brain barrier (BBB) is among the most important processes controlling the pharmacokinetic properties of drugs and other bioactive compounds. Using the fragmental (substructural) descriptors representing the occurrence number of various substructures, as well as the artif...
Autores principales: | Radchenko, Eugene V., Dyabina, Alina S., Palyulin, Vladimir A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763607/ https://www.ncbi.nlm.nih.gov/pubmed/33322142 http://dx.doi.org/10.3390/molecules25245901 |
Ejemplares similares
-
Machine Learning Prediction of Mycobacterial Cell Wall Permeability of Drugs and Drug-like Compounds
por: Radchenko, Eugene V., et al.
Publicado: (2023) -
Diversity of AMPA Receptor Ligands: Chemotypes, Binding Modes, Mechanisms of Action, and Therapeutic Effects
por: Golubeva, Elena A., et al.
Publicado: (2022) -
A deep learning approach to predict blood-brain barrier permeability
por: Alsenan, Shrooq, et al.
Publicado: (2021) -
A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors
por: Meng, Fanwang, et al.
Publicado: (2021) -
Towards Novel Biomimetic In Vitro Models of the Blood–Brain Barrier for Drug Permeability Evaluation
por: Mármol, Inés, et al.
Publicado: (2023)