Cargando…
Artificial Neural Networks-Based Material Parameter Identification for Numerical Simulations of Additively Manufactured Parts by Material Extrusion
To be able to use finite element (FE) simulations in structural component development, experimental investigations for the characterization of the material properties are required to subsequently calibrate suitable material cards. In contrast to the commonly used computational and time-consuming met...
Autores principales: | Meißner, Paul, Watschke, Hagen, Winter, Jens, Vietor, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763659/ https://www.ncbi.nlm.nih.gov/pubmed/33321794 http://dx.doi.org/10.3390/polym12122949 |
Ejemplares similares
-
Material Parameter Identification for Acoustic Simulation of Additively Manufactured Structures
por: Rothe, Sebastian, et al.
Publicado: (2020) -
Development and Processing of Continuous Flax and Carbon Fiber-Reinforced Thermoplastic Composites by a Modified Material Extrusion Process
por: Kuschmitz, Sebastian, et al.
Publicado: (2021) -
Numerical Simulation of a Core–Shell Polymer Strand in Material Extrusion Additive Manufacturing
por: Narei, Hamid, et al.
Publicado: (2021) -
Experimental Validation of Numerical Model for Thermomechanical Performance of Material Extrusion Additive Manufacturing Process: Effect of Process Parameters
por: Al Rashid, Ans, et al.
Publicado: (2022) -
Design and Additive Manufacturing of Porous Sound Absorbers—A Machine-Learning Approach
por: Kuschmitz, Sebastian, et al.
Publicado: (2021)