Cargando…
Isolation and Antitrypanosomal Characterization of Furoquinoline and Oxylipin from Zanthoxylum zanthoxyloides
In the absence of vaccines, there is a need for alternative sources of effective chemotherapy for African trypanosomiasis (AT). The increasing rate of resistance and toxicity of commercially available antitrypanosomal drugs also necessitates an investigation into the mode of action of new antitrypan...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763825/ https://www.ncbi.nlm.nih.gov/pubmed/33322191 http://dx.doi.org/10.3390/biom10121670 |
_version_ | 1783628110329020416 |
---|---|
author | Dofuor, Aboagye Kwarteng Ayertey, Frederick Bolah, Peter Djameh, Georgina Isabella Kyeremeh, Kwaku Ohashi, Mitsuko Okine, Laud Kenneth Gwira, Theresa Manful |
author_facet | Dofuor, Aboagye Kwarteng Ayertey, Frederick Bolah, Peter Djameh, Georgina Isabella Kyeremeh, Kwaku Ohashi, Mitsuko Okine, Laud Kenneth Gwira, Theresa Manful |
author_sort | Dofuor, Aboagye Kwarteng |
collection | PubMed |
description | In the absence of vaccines, there is a need for alternative sources of effective chemotherapy for African trypanosomiasis (AT). The increasing rate of resistance and toxicity of commercially available antitrypanosomal drugs also necessitates an investigation into the mode of action of new antitrypanosomals for AT. In this study, furoquinoline 4, 7, 8-trimethoxyfuro (2, 3-b) quinoline (compound 1) and oxylipin 9-oxo-10, 12-octadecadienoic acid (compound 2) were isolated from the plant species Zanthoxylum zanthoxyloides (Lam) Zepern and Timler (root), and their in vitro efficacy and mechanisms of action investigated in Trypanosoma brucei (T. brucei), the species responsible for AT. Both compounds resulted in a selectively significant growth inhibition of T. brucei (compound 1, half-maximal effective concentration EC(50) = 1.7 μM, selectivity indices SI = 74.9; compound 2, EC(50) = 1.2 μM, SI = 107.3). With regards to effect on the cell cycle phases of T. brucei, only compound 1 significantly arrested the second growth-mitotic (G2-M) phase progression even though G2-M and DNA replication (S) phase arrest resulted in the overall reduction of T. brucei cells in G0-G1 for both compounds. Moreover, both compounds resulted in the aggregation and distortion of the elongated slender morphology of T. brucei. Analysis of antioxidant potential revealed that at their minimum and maximum concentrations, the compounds exhibited significant oxidative activities in T. brucei (compound 1, 22.7 μM Trolox equivalent (TE), 221.2 μM TE; compound 2, 15.0 μM TE, 297.7 μM TE). Analysis of growth kinetics also showed that compound 1 exhibited a relatively consistent growth inhibition of T. brucei at different concentrations as compared to compound 2. The results suggest that compounds 1 and 2 are promising antitrypanosomals with the potential for further development into novel AT chemotherapy. |
format | Online Article Text |
id | pubmed-7763825 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77638252020-12-27 Isolation and Antitrypanosomal Characterization of Furoquinoline and Oxylipin from Zanthoxylum zanthoxyloides Dofuor, Aboagye Kwarteng Ayertey, Frederick Bolah, Peter Djameh, Georgina Isabella Kyeremeh, Kwaku Ohashi, Mitsuko Okine, Laud Kenneth Gwira, Theresa Manful Biomolecules Article In the absence of vaccines, there is a need for alternative sources of effective chemotherapy for African trypanosomiasis (AT). The increasing rate of resistance and toxicity of commercially available antitrypanosomal drugs also necessitates an investigation into the mode of action of new antitrypanosomals for AT. In this study, furoquinoline 4, 7, 8-trimethoxyfuro (2, 3-b) quinoline (compound 1) and oxylipin 9-oxo-10, 12-octadecadienoic acid (compound 2) were isolated from the plant species Zanthoxylum zanthoxyloides (Lam) Zepern and Timler (root), and their in vitro efficacy and mechanisms of action investigated in Trypanosoma brucei (T. brucei), the species responsible for AT. Both compounds resulted in a selectively significant growth inhibition of T. brucei (compound 1, half-maximal effective concentration EC(50) = 1.7 μM, selectivity indices SI = 74.9; compound 2, EC(50) = 1.2 μM, SI = 107.3). With regards to effect on the cell cycle phases of T. brucei, only compound 1 significantly arrested the second growth-mitotic (G2-M) phase progression even though G2-M and DNA replication (S) phase arrest resulted in the overall reduction of T. brucei cells in G0-G1 for both compounds. Moreover, both compounds resulted in the aggregation and distortion of the elongated slender morphology of T. brucei. Analysis of antioxidant potential revealed that at their minimum and maximum concentrations, the compounds exhibited significant oxidative activities in T. brucei (compound 1, 22.7 μM Trolox equivalent (TE), 221.2 μM TE; compound 2, 15.0 μM TE, 297.7 μM TE). Analysis of growth kinetics also showed that compound 1 exhibited a relatively consistent growth inhibition of T. brucei at different concentrations as compared to compound 2. The results suggest that compounds 1 and 2 are promising antitrypanosomals with the potential for further development into novel AT chemotherapy. MDPI 2020-12-13 /pmc/articles/PMC7763825/ /pubmed/33322191 http://dx.doi.org/10.3390/biom10121670 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dofuor, Aboagye Kwarteng Ayertey, Frederick Bolah, Peter Djameh, Georgina Isabella Kyeremeh, Kwaku Ohashi, Mitsuko Okine, Laud Kenneth Gwira, Theresa Manful Isolation and Antitrypanosomal Characterization of Furoquinoline and Oxylipin from Zanthoxylum zanthoxyloides |
title | Isolation and Antitrypanosomal Characterization of Furoquinoline and Oxylipin from Zanthoxylum zanthoxyloides |
title_full | Isolation and Antitrypanosomal Characterization of Furoquinoline and Oxylipin from Zanthoxylum zanthoxyloides |
title_fullStr | Isolation and Antitrypanosomal Characterization of Furoquinoline and Oxylipin from Zanthoxylum zanthoxyloides |
title_full_unstemmed | Isolation and Antitrypanosomal Characterization of Furoquinoline and Oxylipin from Zanthoxylum zanthoxyloides |
title_short | Isolation and Antitrypanosomal Characterization of Furoquinoline and Oxylipin from Zanthoxylum zanthoxyloides |
title_sort | isolation and antitrypanosomal characterization of furoquinoline and oxylipin from zanthoxylum zanthoxyloides |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763825/ https://www.ncbi.nlm.nih.gov/pubmed/33322191 http://dx.doi.org/10.3390/biom10121670 |
work_keys_str_mv | AT dofuoraboagyekwarteng isolationandantitrypanosomalcharacterizationoffuroquinolineandoxylipinfromzanthoxylumzanthoxyloides AT ayerteyfrederick isolationandantitrypanosomalcharacterizationoffuroquinolineandoxylipinfromzanthoxylumzanthoxyloides AT bolahpeter isolationandantitrypanosomalcharacterizationoffuroquinolineandoxylipinfromzanthoxylumzanthoxyloides AT djamehgeorginaisabella isolationandantitrypanosomalcharacterizationoffuroquinolineandoxylipinfromzanthoxylumzanthoxyloides AT kyeremehkwaku isolationandantitrypanosomalcharacterizationoffuroquinolineandoxylipinfromzanthoxylumzanthoxyloides AT ohashimitsuko isolationandantitrypanosomalcharacterizationoffuroquinolineandoxylipinfromzanthoxylumzanthoxyloides AT okinelaudkenneth isolationandantitrypanosomalcharacterizationoffuroquinolineandoxylipinfromzanthoxylumzanthoxyloides AT gwiratheresamanful isolationandantitrypanosomalcharacterizationoffuroquinolineandoxylipinfromzanthoxylumzanthoxyloides |