Cargando…

Surface Characterization and Conductivity of Two Types of Lithium-Based Glass Ceramics after Accelerating Ageing

In this study, two different dental ceramics, based on zirconia-reinforced lithium-silicate (LS1) glass-ceramics (Celtra Duo, Dentsply Sirona, Bensheim, Germany) and lithium disilicate (LS2) ceramics (IPS e.max CAD, Ivoclar, Vivadent, Schaan, Liechtenstein) were examined. They were tested prior to a...

Descripción completa

Detalles Bibliográficos
Autores principales: Jakovac, Marko, Klaser, Teodoro, Radatović, Borna, Skoko, Željko, Pavić, Luka, Žic, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763873/
https://www.ncbi.nlm.nih.gov/pubmed/33321786
http://dx.doi.org/10.3390/ma13245632
Descripción
Sumario:In this study, two different dental ceramics, based on zirconia-reinforced lithium-silicate (LS1) glass-ceramics (Celtra Duo, Dentsply Sirona, Bensheim, Germany) and lithium disilicate (LS2) ceramics (IPS e.max CAD, Ivoclar, Vivadent, Schaan, Liechtenstein) were examined. They were tested prior to and after the crystallization by sintering in the dental furnace. Additionally, the impact of ageing on ceramic degradability was investigated by immersing it in 4% acetic acid at 80 °C for 16 h. The degradability of the materials was monitored by Impedance Spectroscopy (IS), X-Ray Powder Diffraction (XRPD), and Field Emission Scanning Electron Microscope (FE-SEM) techniques. It was detected that LS2 (vs. LS1) samples had a lower conductivity, which can be explained by reduced portions of structural defects. XRPD analyses also showed that the ageing increased the portion of defects in ceramics, which facilitated the ion diffusion and degradation of samples. To summarize, this study suggests that the non-destructive IS technique can be employed to probe the ageing properties of the investigated LS1 and LS2 ceramics materials.