Cargando…

Recognition System Using Fusion Normalization Based on Morphological Features of Post-Exercise ECG for Intelligent Biometrics

Although biometrics systems using an electrocardiogram (ECG) have been actively researched, there is a characteristic that the morphological features of the ECG signal are measured differently depending on the measurement environment. In general, post-exercise ECG is not matched with the morphologic...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Gyu Ho, Ko, Hoon, Pedrycz, Witold, Singh, Amit Kumar, Pan, Sung Bum
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763883/
https://www.ncbi.nlm.nih.gov/pubmed/33322723
http://dx.doi.org/10.3390/s20247130
Descripción
Sumario:Although biometrics systems using an electrocardiogram (ECG) have been actively researched, there is a characteristic that the morphological features of the ECG signal are measured differently depending on the measurement environment. In general, post-exercise ECG is not matched with the morphological features of the pre-exercise ECG because of the temporary tachycardia. This can degrade the user recognition performance. Although normalization studies have been conducted to match the post- and pre-exercise ECG, limitations related to the distortion of the P wave, QRS complexes, and T wave, which are morphological features, often arise. In this paper, we propose a method for matching pre- and post-exercise ECG cycles based on time and frequency fusion normalization in consideration of morphological features and classifying users with high performance by an optimized system. One cycle of post-exercise ECG is expanded by linear interpolation and filtered with an optimized frequency through the fusion normalization method. The fusion normalization method aims to match one post-exercise ECG cycle to one pre-exercise ECG cycle. The experimental results show that the average similarity between the pre- and post-exercise states improves by 25.6% after normalization, for 30 ECG cycles. Additionally, the normalization algorithm improves the maximum user recognition performance from 96.4 to 98%.