Cargando…
Whole and Part Adaptive Fusion Graph Convolutional Networks for Skeleton-Based Action Recognition
Spatiotemporal graph convolution has made significant progress in skeleton-based action recognition in recent years. Most of the existing graph convolution methods take all the joints of the human skeleton as the overall modeling graph, ignoring the differences in the movement patterns of various pa...
Autores principales: | Zuo, Qi, Zou, Lian, Fan, Cien, Li, Dongqian, Jiang, Hao, Liu, Yifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763937/ https://www.ncbi.nlm.nih.gov/pubmed/33322231 http://dx.doi.org/10.3390/s20247149 |
Ejemplares similares
-
Multi-Modality Adaptive Feature Fusion Graph Convolutional Network for Skeleton-Based Action Recognition
por: Zhang, Haiping, et al.
Publicado: (2023) -
Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Liu, Di, et al.
Publicado: (2021) -
Inter-Level Feature Balanced Fusion Network for Street Scene Segmentation
por: Li, Dongqian, et al.
Publicado: (2021) -
Shallow Graph Convolutional Network for Skeleton-Based Action Recognition
por: Yang, Wenjie, et al.
Publicado: (2021) -
Fast Temporal Graph Convolutional Model for Skeleton-Based Action Recognition
por: Nan, Mihai, et al.
Publicado: (2022)