Cargando…
A Robust Solution to Variational Importance Sampling of Minimum Variance
Importance sampling is a Monte Carlo method where samples are obtained from an alternative proposal distribution. This can be used to focus the sampling process in the relevant parts of space, thus reducing the variance. Selecting the proposal that leads to the minimum variance can be formulated as...
Autores principales: | Hernández-González, Jerónimo, Cerquides, Jesús |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763973/ https://www.ncbi.nlm.nih.gov/pubmed/33322766 http://dx.doi.org/10.3390/e22121405 |
Ejemplares similares
-
Lamb Wave-Minimum Sampling Variance Particle Filter-Based Fatigue Crack Prognosis
por: Yang, Weibo, et al.
Publicado: (2019) -
A solution to minimum sample size for regressions
por: Jenkins, David G., et al.
Publicado: (2020) -
Disturbance Modelling for Minimum Variance Control in Adaptive Optics Systems Using Wavefront Sensor Sampled-Data
por: Coronel, María, et al.
Publicado: (2021) -
Minimum important difference is minimally important in sample size calculations
por: Wong, Hubert
Publicado: (2023) -
Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction
por: Mai, Uyen, et al.
Publicado: (2017)