Cargando…
Hybrid Method of Automated EEG Signals’ Selection Using Reversed Correlation Algorithm for Improved Classification of Emotions †
Based on the growing interest in encephalography to enhance human–computer interaction (HCI) and develop brain–computer interfaces (BCIs) for control and monitoring applications, efficient information retrieval from EEG sensors is of great importance. It is difficult due to noise from the internal a...
Autores principales: | Wosiak, Agnieszka, Dura, Aleksandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764031/ https://www.ncbi.nlm.nih.gov/pubmed/33321895 http://dx.doi.org/10.3390/s20247083 |
Ejemplares similares
-
Automated Feature Extraction on AsMap for Emotion Classification Using EEG
por: Ahmed, Md. Zaved Iqubal, et al.
Publicado: (2022) -
Genetic Programming-Based Feature Selection for Emotion Classification Using EEG Signal
por: Sakalle, Aditi, et al.
Publicado: (2022) -
EEG-based emotion recognition using hybrid CNN and LSTM classification
por: Chakravarthi, Bhuvaneshwari, et al.
Publicado: (2022) -
A Hybrid Feature Pool-Based Emotional Stress State Detection Algorithm Using EEG Signals
por: Hasan, Md Junayed, et al.
Publicado: (2019) -
Emotional Stress State Detection Using Genetic Algorithm-Based Feature Selection on EEG Signals
por: Shon, Dongkoo, et al.
Publicado: (2018)