Cargando…
Research on Bearing Fault Diagnosis Method Based on an Adaptive Anti-Noise Network under Long Time Series
In the era of big data, longer time series fault signals will not only be easy to copy and store, but also reduce the labor cost of manual labeling, which can better meet the needs of industrial big data. Aiming to effectively extract the key classification information from a longer time series of b...
Autores principales: | Wang, Changdong, Sun, Hongchun, Zhao, Rong, Cao, Xu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764092/ https://www.ncbi.nlm.nih.gov/pubmed/33302521 http://dx.doi.org/10.3390/s20247031 |
Ejemplares similares
-
An Attention EfficientNet-Based Strategy for Bearing Fault Diagnosis under Strong Noise
por: Hu, Bingbing, et al.
Publicado: (2022) -
An Anti-Noise Convolutional Neural Network for Bearing Fault Diagnosis Based on Multi-Channel Data
por: Zhang, Wei-Tao, et al.
Publicado: (2023) -
Rolling Element Bearing Fault Diagnosis under Impulsive Noise Environment Based on Cyclic Correntropy Spectrum
por: Zhao, Xuejun, et al.
Publicado: (2019) -
Bearing Fault Diagnosis Using Piecewise Aggregate Approximation and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
por: Hu, Lei, et al.
Publicado: (2022) -
Adaptive Multiclass Mahalanobis Taguchi System for Bearing Fault Diagnosis under Variable Conditions
por: Wang, Ning, et al.
Publicado: (2018)