Cargando…
Optimising an FFQ Using a Machine Learning Pipeline to teach an Efficient Nutrient Intake Predictive Model
Food frequency questionnaires (FFQs) are the most commonly selected tools in nutrition monitoring, as they are inexpensive, easily implemented and provide useful information regarding dietary intake. They are usually carefully drafted by experts from nutritional and/or medical fields and can be vali...
Autores principales: | Reščič, Nina, Eftimov, Tome, Koroušić Seljak, Barbara, Luštrek, Mitja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764455/ https://www.ncbi.nlm.nih.gov/pubmed/33321959 http://dx.doi.org/10.3390/nu12123789 |
Ejemplares similares
-
A rule-based named-entity recognition method for knowledge extraction of evidence-based dietary recommendations
por: Eftimov, Tome, et al.
Publicado: (2017) -
StandFood: Standardization of Foods Using a Semi-Automatic System for Classifying and Describing Foods According to FoodEx2
por: Eftimov, Tome, et al.
Publicado: (2017) -
FoodBase corpus: a new resource of annotated food entities
por: Popovski, Gorjan, et al.
Publicado: (2019) -
Nutrient scoring for the DEGS1-FFQ – from food intake to nutrient intake
por: Thieleking, Ronja, et al.
Publicado: (2023) -
Mixed deep learning and natural language processing method for fake-food image recognition and standardization to help automated dietary assessment
por: Mezgec, Simon, et al.
Publicado: (2018)