Cargando…
Assessing Effects of Salinity on the Performance of a Low-Cost Wireless Soil Water Sensor
Low-cost, accurate soil water sensors combined with wireless communication in an internet of things (IoT) framework can be harnessed to enhance the benefits of precision irrigation. However, the accuracy of low-cost sensors (e.g., based on resistivity or capacitance) can be affected by many factors,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764491/ https://www.ncbi.nlm.nih.gov/pubmed/33316968 http://dx.doi.org/10.3390/s20247041 |
_version_ | 1783628269698940928 |
---|---|
author | Peddinti, Srinivasa Rao Hopmans, Jan W. Abou Najm, Majdi Kisekka, Isaya |
author_facet | Peddinti, Srinivasa Rao Hopmans, Jan W. Abou Najm, Majdi Kisekka, Isaya |
author_sort | Peddinti, Srinivasa Rao |
collection | PubMed |
description | Low-cost, accurate soil water sensors combined with wireless communication in an internet of things (IoT) framework can be harnessed to enhance the benefits of precision irrigation. However, the accuracy of low-cost sensors (e.g., based on resistivity or capacitance) can be affected by many factors, including salinity, temperature, and soil structure. Recent developments in wireless sensor networks offer new possibilities for field-scale monitoring of soil water content (SWC) at high spatiotemporal scales, but to install many sensors in the network, the cost of the sensors must be low, and the mechanism of operation needs to be robust, simple, and consume low energy for the technology to be practically relevant. This study evaluated the performance of a resistivity–capacitance-based wireless sensor (Sensoterra BV, 1018LE Amsterdam, Netherlands) under different salinity levels, temperature, and soil types in a laboratory. The sensors were evaluated in glass beads, Oso Flaco sand, Columbia loam, and Yolo clay loam soils. A nonlinear relationship was exhibited between the sensor measured resistance ([Formula: see text]) and volumetric soil water content (θ). The [Formula: see text] – [Formula: see text] relationship differed by soil type and was affected by soil solution salinity. The sensor was extremely sensitive at higher water contents with high uncertainty, and insensitive at low soil water content accompanied by low uncertainty. The soil solution salinity effects on the [Formula: see text] – [Formula: see text] relationship were found to be reduced from sand to sandy loam to clay loam. In clay soils, surface electrical conductivity (EC(s)) of soil particles had a more dominant effect on sensor performance compared to the effect of solution electrical conductivity (EC(w)). The effect of temperature on sensor performance was minimal, but sensor-to-sensor variability was substantial. The relationship between bulk electrical conductivity (EC(b)) and volumetric soil water content was also characterized in this study. The results of this study reveal that if the sensor is properly calibrated, this low-cost wireless soil water sensor has the potential of improving soil water monitoring for precision irrigation and other applications at high spatiotemporal scales, due to the ease of integration into IoT frameworks. |
format | Online Article Text |
id | pubmed-7764491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77644912020-12-27 Assessing Effects of Salinity on the Performance of a Low-Cost Wireless Soil Water Sensor Peddinti, Srinivasa Rao Hopmans, Jan W. Abou Najm, Majdi Kisekka, Isaya Sensors (Basel) Article Low-cost, accurate soil water sensors combined with wireless communication in an internet of things (IoT) framework can be harnessed to enhance the benefits of precision irrigation. However, the accuracy of low-cost sensors (e.g., based on resistivity or capacitance) can be affected by many factors, including salinity, temperature, and soil structure. Recent developments in wireless sensor networks offer new possibilities for field-scale monitoring of soil water content (SWC) at high spatiotemporal scales, but to install many sensors in the network, the cost of the sensors must be low, and the mechanism of operation needs to be robust, simple, and consume low energy for the technology to be practically relevant. This study evaluated the performance of a resistivity–capacitance-based wireless sensor (Sensoterra BV, 1018LE Amsterdam, Netherlands) under different salinity levels, temperature, and soil types in a laboratory. The sensors were evaluated in glass beads, Oso Flaco sand, Columbia loam, and Yolo clay loam soils. A nonlinear relationship was exhibited between the sensor measured resistance ([Formula: see text]) and volumetric soil water content (θ). The [Formula: see text] – [Formula: see text] relationship differed by soil type and was affected by soil solution salinity. The sensor was extremely sensitive at higher water contents with high uncertainty, and insensitive at low soil water content accompanied by low uncertainty. The soil solution salinity effects on the [Formula: see text] – [Formula: see text] relationship were found to be reduced from sand to sandy loam to clay loam. In clay soils, surface electrical conductivity (EC(s)) of soil particles had a more dominant effect on sensor performance compared to the effect of solution electrical conductivity (EC(w)). The effect of temperature on sensor performance was minimal, but sensor-to-sensor variability was substantial. The relationship between bulk electrical conductivity (EC(b)) and volumetric soil water content was also characterized in this study. The results of this study reveal that if the sensor is properly calibrated, this low-cost wireless soil water sensor has the potential of improving soil water monitoring for precision irrigation and other applications at high spatiotemporal scales, due to the ease of integration into IoT frameworks. MDPI 2020-12-09 /pmc/articles/PMC7764491/ /pubmed/33316968 http://dx.doi.org/10.3390/s20247041 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Peddinti, Srinivasa Rao Hopmans, Jan W. Abou Najm, Majdi Kisekka, Isaya Assessing Effects of Salinity on the Performance of a Low-Cost Wireless Soil Water Sensor |
title | Assessing Effects of Salinity on the Performance of a Low-Cost Wireless Soil Water Sensor |
title_full | Assessing Effects of Salinity on the Performance of a Low-Cost Wireless Soil Water Sensor |
title_fullStr | Assessing Effects of Salinity on the Performance of a Low-Cost Wireless Soil Water Sensor |
title_full_unstemmed | Assessing Effects of Salinity on the Performance of a Low-Cost Wireless Soil Water Sensor |
title_short | Assessing Effects of Salinity on the Performance of a Low-Cost Wireless Soil Water Sensor |
title_sort | assessing effects of salinity on the performance of a low-cost wireless soil water sensor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764491/ https://www.ncbi.nlm.nih.gov/pubmed/33316968 http://dx.doi.org/10.3390/s20247041 |
work_keys_str_mv | AT peddintisrinivasarao assessingeffectsofsalinityontheperformanceofalowcostwirelesssoilwatersensor AT hopmansjanw assessingeffectsofsalinityontheperformanceofalowcostwirelesssoilwatersensor AT abounajmmajdi assessingeffectsofsalinityontheperformanceofalowcostwirelesssoilwatersensor AT kisekkaisaya assessingeffectsofsalinityontheperformanceofalowcostwirelesssoilwatersensor |