Cargando…
Real-Time Monitoring for Hydraulic States Based on Convolutional Bidirectional LSTM with Attention Mechanism
By monitoring a hydraulic system using artificial intelligence, we can detect anomalous data in a manufacturing workshop. In addition, by analyzing the anomalous data, we can diagnose faults and prevent failures. However, artificial intelligence, especially deep learning, needs to learn much data, a...
Autores principales: | Kim, Kyutae, Jeong, Jongpil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764528/ https://www.ncbi.nlm.nih.gov/pubmed/33322319 http://dx.doi.org/10.3390/s20247099 |
Ejemplares similares
-
Hybrid attention-based temporal convolutional bidirectional LSTM approach for wind speed interval prediction
por: Bommidi, Bala Saibabu, et al.
Publicado: (2023) -
Vehicle Destination Prediction Using Bidirectional LSTM with Attention Mechanism
por: Casabianca, Pietro, et al.
Publicado: (2021) -
Bidirectional convolutional LSTM for the prediction of nitrogen dioxide in the city of Madrid
por: Iskandaryan, Ditsuhi, et al.
Publicado: (2022) -
Expression EEG Multimodal Emotion Recognition Method Based on the Bidirectional LSTM and Attention Mechanism
por: Zhao, Yifeng, et al.
Publicado: (2021) -
Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification
por: Hua, Yuansheng, et al.
Publicado: (2019)