Cargando…
The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach
The capacity of α-mangostin (α-MG) and β-mangostin (β-MG) from mangosteen pericarp on P-glycoprotein (Pgp) in silico, in vitro, and ex vivo was investigated in this study. Screening with the ADMET Predictor™ program predicted the two compounds to be both a Pgp inhibitor and Pgp substrate. The compou...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764676/ https://www.ncbi.nlm.nih.gov/pubmed/33322620 http://dx.doi.org/10.3390/molecules25245877 |
_version_ | 1783628313169756160 |
---|---|
author | Dechwongya, Panudda Limpisood, Songpol Boonnak, Nawong Mangmool, Supachoke Takeda-Morishita, Mariko Kulsirirat, Thitianan Rukthong, Pattarawit Sathirakul, Korbtham |
author_facet | Dechwongya, Panudda Limpisood, Songpol Boonnak, Nawong Mangmool, Supachoke Takeda-Morishita, Mariko Kulsirirat, Thitianan Rukthong, Pattarawit Sathirakul, Korbtham |
author_sort | Dechwongya, Panudda |
collection | PubMed |
description | The capacity of α-mangostin (α-MG) and β-mangostin (β-MG) from mangosteen pericarp on P-glycoprotein (Pgp) in silico, in vitro, and ex vivo was investigated in this study. Screening with the ADMET Predictor™ program predicted the two compounds to be both a Pgp inhibitor and Pgp substrate. The compounds tended to interact with Pgp and inhibit Pgp ATPase activity. Additionally, bidirectional transport on Caco-2 cell monolayers demonstrated a significantly lower efflux ratio than that of the control (α-(44.68) and β-(46.08) MG versus the control (66.26); p < 0.05) indicating an inhibitory effect on Pgp activity. Test compounds additionally revealed a downregulation of MDR1 mRNA expression. Moreover, an ex vivo absorptive transport in everted mouse ileum confirmed the previous results that α-MG had a Pgp affinity inhibitor, leading to an increase in absorption of the Pgp substrate in the serosal side. In conclusion, α- and β-MG have the capability to inhibit Pgp and they also alter Pgp expression, which makes them possible candidates for reducing multidrug resistance. Additionally, they influence the bioavailability and transport of Pgp substrate drugs. |
format | Online Article Text |
id | pubmed-7764676 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77646762020-12-27 The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach Dechwongya, Panudda Limpisood, Songpol Boonnak, Nawong Mangmool, Supachoke Takeda-Morishita, Mariko Kulsirirat, Thitianan Rukthong, Pattarawit Sathirakul, Korbtham Molecules Article The capacity of α-mangostin (α-MG) and β-mangostin (β-MG) from mangosteen pericarp on P-glycoprotein (Pgp) in silico, in vitro, and ex vivo was investigated in this study. Screening with the ADMET Predictor™ program predicted the two compounds to be both a Pgp inhibitor and Pgp substrate. The compounds tended to interact with Pgp and inhibit Pgp ATPase activity. Additionally, bidirectional transport on Caco-2 cell monolayers demonstrated a significantly lower efflux ratio than that of the control (α-(44.68) and β-(46.08) MG versus the control (66.26); p < 0.05) indicating an inhibitory effect on Pgp activity. Test compounds additionally revealed a downregulation of MDR1 mRNA expression. Moreover, an ex vivo absorptive transport in everted mouse ileum confirmed the previous results that α-MG had a Pgp affinity inhibitor, leading to an increase in absorption of the Pgp substrate in the serosal side. In conclusion, α- and β-MG have the capability to inhibit Pgp and they also alter Pgp expression, which makes them possible candidates for reducing multidrug resistance. Additionally, they influence the bioavailability and transport of Pgp substrate drugs. MDPI 2020-12-11 /pmc/articles/PMC7764676/ /pubmed/33322620 http://dx.doi.org/10.3390/molecules25245877 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dechwongya, Panudda Limpisood, Songpol Boonnak, Nawong Mangmool, Supachoke Takeda-Morishita, Mariko Kulsirirat, Thitianan Rukthong, Pattarawit Sathirakul, Korbtham The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach |
title | The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach |
title_full | The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach |
title_fullStr | The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach |
title_full_unstemmed | The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach |
title_short | The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach |
title_sort | intestinal efflux transporter inhibition activity of xanthones from mangosteen pericarp: an in silico, in vitro and ex vivo approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764676/ https://www.ncbi.nlm.nih.gov/pubmed/33322620 http://dx.doi.org/10.3390/molecules25245877 |
work_keys_str_mv | AT dechwongyapanudda theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT limpisoodsongpol theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT boonnaknawong theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT mangmoolsupachoke theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT takedamorishitamariko theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT kulsiriratthitianan theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT rukthongpattarawit theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT sathirakulkorbtham theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT dechwongyapanudda intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT limpisoodsongpol intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT boonnaknawong intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT mangmoolsupachoke intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT takedamorishitamariko intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT kulsiriratthitianan intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT rukthongpattarawit intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach AT sathirakulkorbtham intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach |