Cargando…

The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach

The capacity of α-mangostin (α-MG) and β-mangostin (β-MG) from mangosteen pericarp on P-glycoprotein (Pgp) in silico, in vitro, and ex vivo was investigated in this study. Screening with the ADMET Predictor™ program predicted the two compounds to be both a Pgp inhibitor and Pgp substrate. The compou...

Descripción completa

Detalles Bibliográficos
Autores principales: Dechwongya, Panudda, Limpisood, Songpol, Boonnak, Nawong, Mangmool, Supachoke, Takeda-Morishita, Mariko, Kulsirirat, Thitianan, Rukthong, Pattarawit, Sathirakul, Korbtham
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764676/
https://www.ncbi.nlm.nih.gov/pubmed/33322620
http://dx.doi.org/10.3390/molecules25245877
_version_ 1783628313169756160
author Dechwongya, Panudda
Limpisood, Songpol
Boonnak, Nawong
Mangmool, Supachoke
Takeda-Morishita, Mariko
Kulsirirat, Thitianan
Rukthong, Pattarawit
Sathirakul, Korbtham
author_facet Dechwongya, Panudda
Limpisood, Songpol
Boonnak, Nawong
Mangmool, Supachoke
Takeda-Morishita, Mariko
Kulsirirat, Thitianan
Rukthong, Pattarawit
Sathirakul, Korbtham
author_sort Dechwongya, Panudda
collection PubMed
description The capacity of α-mangostin (α-MG) and β-mangostin (β-MG) from mangosteen pericarp on P-glycoprotein (Pgp) in silico, in vitro, and ex vivo was investigated in this study. Screening with the ADMET Predictor™ program predicted the two compounds to be both a Pgp inhibitor and Pgp substrate. The compounds tended to interact with Pgp and inhibit Pgp ATPase activity. Additionally, bidirectional transport on Caco-2 cell monolayers demonstrated a significantly lower efflux ratio than that of the control (α-(44.68) and β-(46.08) MG versus the control (66.26); p < 0.05) indicating an inhibitory effect on Pgp activity. Test compounds additionally revealed a downregulation of MDR1 mRNA expression. Moreover, an ex vivo absorptive transport in everted mouse ileum confirmed the previous results that α-MG had a Pgp affinity inhibitor, leading to an increase in absorption of the Pgp substrate in the serosal side. In conclusion, α- and β-MG have the capability to inhibit Pgp and they also alter Pgp expression, which makes them possible candidates for reducing multidrug resistance. Additionally, they influence the bioavailability and transport of Pgp substrate drugs.
format Online
Article
Text
id pubmed-7764676
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77646762020-12-27 The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach Dechwongya, Panudda Limpisood, Songpol Boonnak, Nawong Mangmool, Supachoke Takeda-Morishita, Mariko Kulsirirat, Thitianan Rukthong, Pattarawit Sathirakul, Korbtham Molecules Article The capacity of α-mangostin (α-MG) and β-mangostin (β-MG) from mangosteen pericarp on P-glycoprotein (Pgp) in silico, in vitro, and ex vivo was investigated in this study. Screening with the ADMET Predictor™ program predicted the two compounds to be both a Pgp inhibitor and Pgp substrate. The compounds tended to interact with Pgp and inhibit Pgp ATPase activity. Additionally, bidirectional transport on Caco-2 cell monolayers demonstrated a significantly lower efflux ratio than that of the control (α-(44.68) and β-(46.08) MG versus the control (66.26); p < 0.05) indicating an inhibitory effect on Pgp activity. Test compounds additionally revealed a downregulation of MDR1 mRNA expression. Moreover, an ex vivo absorptive transport in everted mouse ileum confirmed the previous results that α-MG had a Pgp affinity inhibitor, leading to an increase in absorption of the Pgp substrate in the serosal side. In conclusion, α- and β-MG have the capability to inhibit Pgp and they also alter Pgp expression, which makes them possible candidates for reducing multidrug resistance. Additionally, they influence the bioavailability and transport of Pgp substrate drugs. MDPI 2020-12-11 /pmc/articles/PMC7764676/ /pubmed/33322620 http://dx.doi.org/10.3390/molecules25245877 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Dechwongya, Panudda
Limpisood, Songpol
Boonnak, Nawong
Mangmool, Supachoke
Takeda-Morishita, Mariko
Kulsirirat, Thitianan
Rukthong, Pattarawit
Sathirakul, Korbtham
The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach
title The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach
title_full The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach
title_fullStr The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach
title_full_unstemmed The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach
title_short The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach
title_sort intestinal efflux transporter inhibition activity of xanthones from mangosteen pericarp: an in silico, in vitro and ex vivo approach
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764676/
https://www.ncbi.nlm.nih.gov/pubmed/33322620
http://dx.doi.org/10.3390/molecules25245877
work_keys_str_mv AT dechwongyapanudda theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT limpisoodsongpol theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT boonnaknawong theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT mangmoolsupachoke theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT takedamorishitamariko theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT kulsiriratthitianan theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT rukthongpattarawit theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT sathirakulkorbtham theintestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT dechwongyapanudda intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT limpisoodsongpol intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT boonnaknawong intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT mangmoolsupachoke intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT takedamorishitamariko intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT kulsiriratthitianan intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT rukthongpattarawit intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach
AT sathirakulkorbtham intestinaleffluxtransporterinhibitionactivityofxanthonesfrommangosteenpericarpaninsilicoinvitroandexvivoapproach