Cargando…

Intelligent Diagnosis towards Hydraulic Axial Piston Pump Using a Novel Integrated CNN Model

As a critical part of a hydraulic transmission system, a hydraulic axial piston pump plays an indispensable role in many significant industrial fields. Owing to the practical undesirable working environment and hidden faults, it is challenging to precisely and effectively detect and diagnose the var...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Shengnan, Zhu, Yong, Yuan, Shouqi, Li, Guangpeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764862/
https://www.ncbi.nlm.nih.gov/pubmed/33327378
http://dx.doi.org/10.3390/s20247152
Descripción
Sumario:As a critical part of a hydraulic transmission system, a hydraulic axial piston pump plays an indispensable role in many significant industrial fields. Owing to the practical undesirable working environment and hidden faults, it is challenging to precisely and effectively detect and diagnose the varying fault in the engineering. Deep learning-based technology presents special strengths in processing mechanical big data. It can simultaneously complete the feature extraction and classification, and achieve the automatic information learning. The popular convolutional neural network (CNN) is exploited for its potent ability of image processing. In this paper, a novel combined intelligent method is developed for fault diagnosis towards a hydraulic axial piston pump. First, the conversion of signals to images is conducted via continuous wavelet transform; the effective feature is preliminarily extracted from the transformed time-frequency images. Second, a novel deep CNN model is constructed to achieve the fault classification. To disclose the potential learning in the disparate layers of the CNN model, the visualization of reduced features is performed by employing t-distributed stochastic neighbor embedding. The effectiveness and stability of the proposed model are validated through the experiments. With the proposed method, different fault types can be precisely identified and high classification accuracy is achieved in a hydraulic axial piston pump.