Cargando…
Physicochemical Properties and Hematocompatibility of Layered Double Hydroxide-Based Anticancer Drug Methotrexate Delivery System
A layered double hydroxide (LDH)-based anticancer delivery system was investigated in terms of crystalline phase, particle size, hydrodynamic radius, zeta potential, etc. through in vitro and in vivo study. Size controlled LDH with anticancer drug methotrexate (MTX) incorporation was successfully pr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764879/ https://www.ncbi.nlm.nih.gov/pubmed/33327415 http://dx.doi.org/10.3390/pharmaceutics12121210 |
_version_ | 1783628361456680960 |
---|---|
author | Jung, Sang-Yong Kim, Hyoung-Mi Hwang, Soonjae Jeung, Do-Gak Rhee, Ki-Jong Oh, Jae-Min |
author_facet | Jung, Sang-Yong Kim, Hyoung-Mi Hwang, Soonjae Jeung, Do-Gak Rhee, Ki-Jong Oh, Jae-Min |
author_sort | Jung, Sang-Yong |
collection | PubMed |
description | A layered double hydroxide (LDH)-based anticancer delivery system was investigated in terms of crystalline phase, particle size, hydrodynamic radius, zeta potential, etc. through in vitro and in vivo study. Size controlled LDH with anticancer drug methotrexate (MTX) incorporation was successfully prepared through step-by-step hydrothermal reaction and ion-exchange reaction. The MTX-LDH was determined to have a neutral surface charge and strong agglomeration in the neutral aqueous condition due to the surface adsorbed MTX; however, the existence of proteins in the media dramatically reduced agglomeration, resulting in the hydrodynamic radius of MTX-LDH being similar to the primary particle size. The protein fluorescence quenching assay exhibited that MTX readily reduced the fluorescence of proteins, suggesting that the interaction between MTX and proteins was strong. On the other hand, MTX-LDH showed much less binding constant to proteins compared with MTX, implying that the protein interaction of MTX was effectively blocked by the LDH carrier. The in vivo hemolysis assay after intravenous injection of MTX-LDH showed neither significant reduction in red blood cell number nor membrane damage. Furthermore, the morphology of red blood cells in a mouse model did not change upon MTX-LDH injection. Scanning electron microscopy showed that the MTX-LDH particles were attached on the blood cells without serious denaturation of cellular morphology, taking advantage of the cell hitchhiking property. |
format | Online Article Text |
id | pubmed-7764879 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77648792020-12-27 Physicochemical Properties and Hematocompatibility of Layered Double Hydroxide-Based Anticancer Drug Methotrexate Delivery System Jung, Sang-Yong Kim, Hyoung-Mi Hwang, Soonjae Jeung, Do-Gak Rhee, Ki-Jong Oh, Jae-Min Pharmaceutics Article A layered double hydroxide (LDH)-based anticancer delivery system was investigated in terms of crystalline phase, particle size, hydrodynamic radius, zeta potential, etc. through in vitro and in vivo study. Size controlled LDH with anticancer drug methotrexate (MTX) incorporation was successfully prepared through step-by-step hydrothermal reaction and ion-exchange reaction. The MTX-LDH was determined to have a neutral surface charge and strong agglomeration in the neutral aqueous condition due to the surface adsorbed MTX; however, the existence of proteins in the media dramatically reduced agglomeration, resulting in the hydrodynamic radius of MTX-LDH being similar to the primary particle size. The protein fluorescence quenching assay exhibited that MTX readily reduced the fluorescence of proteins, suggesting that the interaction between MTX and proteins was strong. On the other hand, MTX-LDH showed much less binding constant to proteins compared with MTX, implying that the protein interaction of MTX was effectively blocked by the LDH carrier. The in vivo hemolysis assay after intravenous injection of MTX-LDH showed neither significant reduction in red blood cell number nor membrane damage. Furthermore, the morphology of red blood cells in a mouse model did not change upon MTX-LDH injection. Scanning electron microscopy showed that the MTX-LDH particles were attached on the blood cells without serious denaturation of cellular morphology, taking advantage of the cell hitchhiking property. MDPI 2020-12-14 /pmc/articles/PMC7764879/ /pubmed/33327415 http://dx.doi.org/10.3390/pharmaceutics12121210 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jung, Sang-Yong Kim, Hyoung-Mi Hwang, Soonjae Jeung, Do-Gak Rhee, Ki-Jong Oh, Jae-Min Physicochemical Properties and Hematocompatibility of Layered Double Hydroxide-Based Anticancer Drug Methotrexate Delivery System |
title | Physicochemical Properties and Hematocompatibility of Layered Double Hydroxide-Based Anticancer Drug Methotrexate Delivery System |
title_full | Physicochemical Properties and Hematocompatibility of Layered Double Hydroxide-Based Anticancer Drug Methotrexate Delivery System |
title_fullStr | Physicochemical Properties and Hematocompatibility of Layered Double Hydroxide-Based Anticancer Drug Methotrexate Delivery System |
title_full_unstemmed | Physicochemical Properties and Hematocompatibility of Layered Double Hydroxide-Based Anticancer Drug Methotrexate Delivery System |
title_short | Physicochemical Properties and Hematocompatibility of Layered Double Hydroxide-Based Anticancer Drug Methotrexate Delivery System |
title_sort | physicochemical properties and hematocompatibility of layered double hydroxide-based anticancer drug methotrexate delivery system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764879/ https://www.ncbi.nlm.nih.gov/pubmed/33327415 http://dx.doi.org/10.3390/pharmaceutics12121210 |
work_keys_str_mv | AT jungsangyong physicochemicalpropertiesandhematocompatibilityoflayereddoublehydroxidebasedanticancerdrugmethotrexatedeliverysystem AT kimhyoungmi physicochemicalpropertiesandhematocompatibilityoflayereddoublehydroxidebasedanticancerdrugmethotrexatedeliverysystem AT hwangsoonjae physicochemicalpropertiesandhematocompatibilityoflayereddoublehydroxidebasedanticancerdrugmethotrexatedeliverysystem AT jeungdogak physicochemicalpropertiesandhematocompatibilityoflayereddoublehydroxidebasedanticancerdrugmethotrexatedeliverysystem AT rheekijong physicochemicalpropertiesandhematocompatibilityoflayereddoublehydroxidebasedanticancerdrugmethotrexatedeliverysystem AT ohjaemin physicochemicalpropertiesandhematocompatibilityoflayereddoublehydroxidebasedanticancerdrugmethotrexatedeliverysystem |