Cargando…
Information Bottleneck: Theory and Applications in Deep Learning
Autores principales: | Geiger, Bernhard C., Kubin, Gernot |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764901/ https://www.ncbi.nlm.nih.gov/pubmed/33327417 http://dx.doi.org/10.3390/e22121408 |
Ejemplares similares
-
On the Difference between the Information Bottleneck and the Deep Information Bottleneck
por: Wieczorek, Aleksander, et al.
Publicado: (2020) -
A Comparison of Variational Bounds for the Information Bottleneck Functional
por: Geiger, Bernhard C., et al.
Publicado: (2020) -
Information Bottleneck Theory Based Exploration of Cascade Learning
por: Du, Xin, et al.
Publicado: (2021) -
Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory
por: Zuo, Lianrui, et al.
Publicado: (2021) -
Information Theory: Deep Ideas, Wide Perspectives, and Various Applications
por: Ben-Gal, Irad, et al.
Publicado: (2021)