Cargando…
A Deep Neural Network for Accurate and Robust Prediction of the Glass Transition Temperature of Polyhydroxyalkanoate Homo- and Copolymers
The purpose of this study was to develop a data-driven machine learning model to predict the performance properties of polyhydroxyalkanoates (PHAs), a group of biosourced polyesters featuring excellent performance, to guide future design and synthesis experiments. A deep neural network (DNN) machine...
Autores principales: | Jiang, Zhuoying, Hu, Jiajie, Marrone, Babetta L., Pilania, Ghanshyam, Yu, Xiong (Bill) |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765086/ https://www.ncbi.nlm.nih.gov/pubmed/33327598 http://dx.doi.org/10.3390/ma13245701 |
Ejemplares similares
-
Predicting the Mechanical Response of Polyhydroxyalkanoate Biopolymers Using Molecular Dynamics Simulations
por: Bejagam, Karteek K., et al.
Publicado: (2022) -
Increased Production and Molecular Weight of Artificial Polyhydroxyalkanoate Poly(2-hydroxybutyrate) Above the Glass Transition Temperature Threshold
por: Matsumoto, Ken'ichiro, et al.
Publicado: (2019) -
Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures
por: Dias, João ML, et al.
Publicado: (2008) -
Bioconversion of biphenyl to a polyhydroxyalkanoate copolymer by Alcaligenes denitrificans A41
por: Yajima, Taito, et al.
Publicado: (2020) -
Chemical syntheses and salient features of azulene-containing homo- and copolymers
por: Shetti, Vijayendra S
Publicado: (2021)