Cargando…
Graph Adaptation Network with Domain-Specific Word Alignment for Cross-Domain Relation Extraction
Cross-domain relation extraction has become an essential approach when target domain lacking labeled data. Most existing works adapted relation extraction models from the source domain to target domain through aligning sequential features, but failed to transfer non-local and non-sequential features...
Autores principales: | Wang, Zhe, Yan, Bo, Wu, Chunhua, Wu, Bin, Wang, Xiujuan, Zheng, Kangfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765263/ https://www.ncbi.nlm.nih.gov/pubmed/33333844 http://dx.doi.org/10.3390/s20247180 |
Ejemplares similares
-
Phishing Website Detection Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning
por: Yang, Rundong, et al.
Publicado: (2021) -
Kernel Manifold Alignment for Domain Adaptation
por: Tuia, Devis, et al.
Publicado: (2016) -
Domain-specific knowledge graph construction
por: Kejriwal, Mayank
Publicado: (2019) -
A graph kernel approach for alignment-free domain–peptide interaction prediction with an application to human SH3 domains
por: Kundu, Kousik, et al.
Publicado: (2013) -
Early number word learning: Associations with domain-general and domain-specific quantitative abilities
por: Yang, Meiling, et al.
Publicado: (2022)