Cargando…
A Critical Evaluation of Privacy and Security Threats in Federated Learning
With the advent of smart devices, smartphones, and smart everything, the Internet of Things (IoT) has emerged with an incredible impact on the industries and human life. The IoT consists of millions of clients that exchange massive amounts of critical data, which results in high privacy risks when p...
Autores principales: | Asad, Muhammad, Moustafa, Ahmed, Yu, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765278/ https://www.ncbi.nlm.nih.gov/pubmed/33333854 http://dx.doi.org/10.3390/s20247182 |
Ejemplares similares
-
Approaches to Federated Computing for the Protection of Patient Privacy and Security Using Medical Applications
por: Ahmed, Osman Sirajeldeen, et al.
Publicado: (2022) -
Privacy-first health research with federated learning
por: Sadilek, Adam, et al.
Publicado: (2021) -
Federated learning and differential privacy for medical image analysis
por: Adnan, Mohammed, et al.
Publicado: (2022) -
In the Pursuit of Privacy: The Promises and Predicaments of Federated Learning in Healthcare
por: Topaloglu, Mustafa Y., et al.
Publicado: (2021) -
Federated Learning for Privacy-Aware Human Mobility Modeling
por: Ezequiel, Castro Elizondo Jose, et al.
Publicado: (2022)