Cargando…
Whole Time Series Data Streams Clustering: Dynamic Profiling of the Electricity Consumption
Data from smart grids are challenging to analyze due to their very large size, high dimensionality, skewness, sparsity, and number of seasonal fluctuations, including daily and weekly effects. With the data arriving in a sequential form the underlying distribution is subject to changes over the time...
Autores principales: | Gajowniczek, Krzysztof, Bator, Marcin, Ząbkowski, Tomasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765420/ https://www.ncbi.nlm.nih.gov/pubmed/33333937 http://dx.doi.org/10.3390/e22121414 |
Ejemplares similares
-
Electricity forecasting on the individual household level enhanced based on activity patterns
por: Gajowniczek, Krzysztof, et al.
Publicado: (2017) -
Reducing False Arrhythmia Alarms Using Different Methods of Probability and Class Assignment in Random Forest Learning Methods
por: Gajowniczek, Krzysztof, et al.
Publicado: (2019) -
Simulation Study on the Application of the Generalized Entropy Concept in Artificial Neural Networks
por: Gajowniczek, Krzysztof, et al.
Publicado: (2018) -
Weighted Random Forests to Improve Arrhythmia Classification
por: Gajowniczek, Krzysztof, et al.
Publicado: (2020) -
Semantic and Generalized Entropy Loss Functions for Semi-Supervised Deep Learning
por: Gajowniczek, Krzysztof, et al.
Publicado: (2020)