Cargando…
Deep Learning for Activity Recognition in Older People Using a Pocket-Worn Smartphone
Activity recognition can provide useful information about an older individual’s activity level and encourage older people to become more active to live longer in good health. This study aimed to develop an activity recognition algorithm for smartphone accelerometry data of older people. Deep learnin...
Autores principales: | Nan, Yashi, Lovell, Nigel H., Redmond, Stephen J., Wang, Kejia, Delbaere, Kim, van Schooten, Kimberley S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765519/ https://www.ncbi.nlm.nih.gov/pubmed/33334028 http://dx.doi.org/10.3390/s20247195 |
Ejemplares similares
-
The effects of cognitive-motor training interventions on executive functions in older people: a systematic review and meta-analysis
por: Wollesen, Bettina, et al.
Publicado: (2020) -
Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors
por: Shoaib, Muhammad, et al.
Publicado: (2016) -
Association of Prospective Falls in Older People With Ubiquitous Step-Based Fall Risk Parameters Calculated From Ambulatory Inertial Signals: Secondary Data Analysis
por: Al Abiad, Nahime, et al.
Publicado: (2023) -
Association between Daily-Life Gait Quality Characteristics and Physiological Fall Risk in Older People
por: Schootemeijer, Sabine, et al.
Publicado: (2020) -
Review: Are we stumbling in our quest to find the best predictor? Over-optimism in sensor-based models for predicting falls in older adults
por: Shany, Tal, et al.
Publicado: (2015)