Cargando…
Statistical Features in High-Frequency Bands of Interictal iEEG Work Efficiently in Identifying the Seizure Onset Zone in Patients with Focal Epilepsy
The design of a computer-aided system for identifying the seizure onset zone (SOZ) from interictal and ictal electroencephalograms (EEGs) is desired by epileptologists. This study aims to introduce the statistical features of high-frequency components (HFCs) in interictal intracranial electroencepha...
Autores principales: | Akter, Most. Sheuli, Islam, Md. Rabiul, Tanaka, Toshihisa, Iimura, Yasushi, Mitsuhashi, Takumi, Sugano, Hidenori, Wang, Duo, Molla, Md. Khademul Islam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765521/ https://www.ncbi.nlm.nih.gov/pubmed/33334058 http://dx.doi.org/10.3390/e22121415 |
Ejemplares similares
-
Multiband entropy-based feature-extraction method for automatic identification of epileptic focus based on high-frequency components in interictal iEEG
por: Akter, Most. Sheuli, et al.
Publicado: (2020) -
Epileptic seizure focus detection from interictal electroencephalogram: a survey
por: Islam, Md. Rabiul, et al.
Publicado: (2022) -
Granger Causality Analysis of Interictal iEEG Predicts Seizure Focus and Ultimate Resection
por: Park, Eun-Hyoung, et al.
Publicado: (2018) -
Graph Eigen Decomposition-Based Feature-Selection Method for Epileptic Seizure Detection Using Electroencephalography †
por: Molla, Md. Khademul Islam, et al.
Publicado: (2020) -
Seizure onset zone identification using phase-amplitude coupling and multiple machine learning approaches for interictal electrocorticogram
por: Miao, Yao, et al.
Publicado: (2022)