Cargando…
Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy
Therapeutic options for non-small cell lung cancer (NSCLC) treatment have changed dramatically in recent years with the advent of novel immunotherapeutic approaches. Among these, immune checkpoint blockade (ICB) using monoclonal antibodies has shown tremendous promise in approximately 20% of patient...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765568/ https://www.ncbi.nlm.nih.gov/pubmed/33339195 http://dx.doi.org/10.3390/biomedicines8120617 |
_version_ | 1783628520523563008 |
---|---|
author | Ebelt, Nancy D. Zuniga, Edith Marzagalli, Monica Zamloot, Vic Blazar, Bruce R. Salgia, Ravi Manuel, Edwin R. |
author_facet | Ebelt, Nancy D. Zuniga, Edith Marzagalli, Monica Zamloot, Vic Blazar, Bruce R. Salgia, Ravi Manuel, Edwin R. |
author_sort | Ebelt, Nancy D. |
collection | PubMed |
description | Therapeutic options for non-small cell lung cancer (NSCLC) treatment have changed dramatically in recent years with the advent of novel immunotherapeutic approaches. Among these, immune checkpoint blockade (ICB) using monoclonal antibodies has shown tremendous promise in approximately 20% of patients. In order to better predict patients that will respond to ICB treatment, biomarkers such as tumor-associated CD8(+) T cell frequency, tumor checkpoint protein status and mutational burden have been utilized, however, with mixed success. In this study, we hypothesized that significantly altering the suppressive tumor immune landscape in NSCLC could potentially improve ICB efficacy. Using sub-therapeutic doses of our Salmonella typhimurium-based therapy targeting the suppressive molecule indoleamine 2,3-dioxygenase (shIDO-ST) in tumor-bearing mice, we observed dramatic changes in immune subset phenotypes that included increases in antigen presentation markers, decreased regulatory T cell frequency and overall reduced checkpoint protein expression. Combination shIDO-ST treatment with anti-PD-1/CTLA-4 antibodies enhanced tumor growth control, compared to either treatment alone, which was associated with significant intratumoral infiltration by CD8(+) and CD4(+) T cells. Ultimately, we show that increases in antigen presentation markers and infiltration by T cells is correlated with significantly increased survival in NSCLC patients. These results suggest that the success of ICB therapy may be more accurately predicted by taking into account multiple factors such as potential for antigen presentation and immune subset repertoire in addition to markers already being considered. Alternatively, combination treatment with agents such as shIDO-ST could be used to create a more conducive tumor microenvironment for improving responses to ICB. |
format | Online Article Text |
id | pubmed-7765568 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77655682020-12-27 Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy Ebelt, Nancy D. Zuniga, Edith Marzagalli, Monica Zamloot, Vic Blazar, Bruce R. Salgia, Ravi Manuel, Edwin R. Biomedicines Article Therapeutic options for non-small cell lung cancer (NSCLC) treatment have changed dramatically in recent years with the advent of novel immunotherapeutic approaches. Among these, immune checkpoint blockade (ICB) using monoclonal antibodies has shown tremendous promise in approximately 20% of patients. In order to better predict patients that will respond to ICB treatment, biomarkers such as tumor-associated CD8(+) T cell frequency, tumor checkpoint protein status and mutational burden have been utilized, however, with mixed success. In this study, we hypothesized that significantly altering the suppressive tumor immune landscape in NSCLC could potentially improve ICB efficacy. Using sub-therapeutic doses of our Salmonella typhimurium-based therapy targeting the suppressive molecule indoleamine 2,3-dioxygenase (shIDO-ST) in tumor-bearing mice, we observed dramatic changes in immune subset phenotypes that included increases in antigen presentation markers, decreased regulatory T cell frequency and overall reduced checkpoint protein expression. Combination shIDO-ST treatment with anti-PD-1/CTLA-4 antibodies enhanced tumor growth control, compared to either treatment alone, which was associated with significant intratumoral infiltration by CD8(+) and CD4(+) T cells. Ultimately, we show that increases in antigen presentation markers and infiltration by T cells is correlated with significantly increased survival in NSCLC patients. These results suggest that the success of ICB therapy may be more accurately predicted by taking into account multiple factors such as potential for antigen presentation and immune subset repertoire in addition to markers already being considered. Alternatively, combination treatment with agents such as shIDO-ST could be used to create a more conducive tumor microenvironment for improving responses to ICB. MDPI 2020-12-16 /pmc/articles/PMC7765568/ /pubmed/33339195 http://dx.doi.org/10.3390/biomedicines8120617 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ebelt, Nancy D. Zuniga, Edith Marzagalli, Monica Zamloot, Vic Blazar, Bruce R. Salgia, Ravi Manuel, Edwin R. Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy |
title | Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy |
title_full | Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy |
title_fullStr | Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy |
title_full_unstemmed | Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy |
title_short | Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy |
title_sort | salmonella-based therapy targeting indoleamine 2,3-dioxygenase restructures the immune contexture to improve checkpoint blockade efficacy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765568/ https://www.ncbi.nlm.nih.gov/pubmed/33339195 http://dx.doi.org/10.3390/biomedicines8120617 |
work_keys_str_mv | AT ebeltnancyd salmonellabasedtherapytargetingindoleamine23dioxygenaserestructurestheimmunecontexturetoimprovecheckpointblockadeefficacy AT zunigaedith salmonellabasedtherapytargetingindoleamine23dioxygenaserestructurestheimmunecontexturetoimprovecheckpointblockadeefficacy AT marzagallimonica salmonellabasedtherapytargetingindoleamine23dioxygenaserestructurestheimmunecontexturetoimprovecheckpointblockadeefficacy AT zamlootvic salmonellabasedtherapytargetingindoleamine23dioxygenaserestructurestheimmunecontexturetoimprovecheckpointblockadeefficacy AT blazarbrucer salmonellabasedtherapytargetingindoleamine23dioxygenaserestructurestheimmunecontexturetoimprovecheckpointblockadeefficacy AT salgiaravi salmonellabasedtherapytargetingindoleamine23dioxygenaserestructurestheimmunecontexturetoimprovecheckpointblockadeefficacy AT manueledwinr salmonellabasedtherapytargetingindoleamine23dioxygenaserestructurestheimmunecontexturetoimprovecheckpointblockadeefficacy |