Cargando…

From miRNA Target Gene Network to miRNA Function: miR-375 Might Regulate Apoptosis and Actin Dynamics in the Heart Muscle via Rho-GTPases-Dependent Pathways

MicroRNAs (miRNAs) are short, single-stranded, non-coding ribonucleic acid (RNA) molecules, which are involved in the regulation of main biological processes, such as apoptosis or cell proliferation and differentiation, through sequence-specific interaction with target mRNAs. In this study, we propo...

Descripción completa

Detalles Bibliográficos
Autores principales: Osmak, German, Kiselev, Ivan, Baulina, Natalia, Favorova, Olga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765785/
https://www.ncbi.nlm.nih.gov/pubmed/33352947
http://dx.doi.org/10.3390/ijms21249670
Descripción
Sumario:MicroRNAs (miRNAs) are short, single-stranded, non-coding ribonucleic acid (RNA) molecules, which are involved in the regulation of main biological processes, such as apoptosis or cell proliferation and differentiation, through sequence-specific interaction with target mRNAs. In this study, we propose a workflow for predicting miRNAs function by analyzing the structure of the network of their target genes. This workflow was applied to study the functional role of miR-375 in the heart muscle (myocardium), since this miRNA was previously shown to be associated with heart diseases, and data on its function in the myocardium are mostly unclear. We identified PIK3CA, RHOA, MAPK3, PAFAH1B1, CTNNB1, MYC, PRKCA, ERBB2, and CDC42 as key genes in the miR-375 regulated network and predicted the possible function of miR-375 in the heart muscle, consisting mainly in the regulation of the Rho-GTPases-dependent signaling pathways. We implemented our algorithm for miRNA function prediction into a Python module, which is available at GitHub.