Cargando…
Femtosecond Laser-Induced Periodic Surface Structures on Different Tilted Metal Surfaces
Laser-induced periodic surface structures (LIPSS) are used for the precision surface treatment of 3D components. However, with LIPSS, the non-normal incident angle between the irradiated laser beam and the specimen surface occurs. This study investigated LIPSS on four different metals (SUS 304, Ti,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765836/ https://www.ncbi.nlm.nih.gov/pubmed/33348684 http://dx.doi.org/10.3390/nano10122540 |
Sumario: | Laser-induced periodic surface structures (LIPSS) are used for the precision surface treatment of 3D components. However, with LIPSS, the non-normal incident angle between the irradiated laser beam and the specimen surface occurs. This study investigated LIPSS on four different metals (SUS 304, Ti, Al, and Cu), processed on a tilted surface by an s-polarized femtosecond fiber laser. A rotated low spatial frequency LIPSS (LSFL) was obtained on SUS 304 and Ti materials by the line scanning process. However, LSFL on Cu and Al materials was still perpendicular to the laser polarization. The reason for the rotated and un-rotated LSFL on tilted metal surfaces was presented. The electron-phonon coupling factor and thermal conductivity properties might induce rotational LSFL on tilted SUS 304 and Ti surfaces. When fabricating LSFL on an inclined plane, a calibration model between the LSFL orientation and inclined plane angle must be established. Hence, the laser polarization direction must be controlled to obtain suitable LSFL characteristics on a 3D surface. |
---|