Cargando…

An Organic–Inorganic Hybrid Nanocomposite as a Potential New Biological Agent

To solve the problem of human diseases caused by a combination of genetic and environmental factors or by microorganisms, intense research to find completely new materials is required. One of the promising systems in this area is the silver-silica nanocomposites and their derivatives. Hence, silver...

Descripción completa

Detalles Bibliográficos
Autores principales: Dulski, Mateusz, Malarz, Katarzyna, Kuczak, Michał, Dudek, Karolina, Matus, Krzysztof, Sułowicz, Sławomir, Mrozek-Wilczkiewicz, Anna, Nowak, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765888/
https://www.ncbi.nlm.nih.gov/pubmed/33353198
http://dx.doi.org/10.3390/nano10122551
Descripción
Sumario:To solve the problem of human diseases caused by a combination of genetic and environmental factors or by microorganisms, intense research to find completely new materials is required. One of the promising systems in this area is the silver-silica nanocomposites and their derivatives. Hence, silver and silver oxide nanoparticles that were homogeneously distributed within a silica carrier were fabricated. Their average size was d = (7.8 ± 0.3) nm. The organic polymers (carboxymethylcellulose (CMC) and sodium alginate (AS)) were added to improve the biological features of the nanocomposite. The first system was prepared as a silver chlorine salt combination that was immersed on a silica carrier with coagulated particles whose size was d = (44.1 ± 2.3) nm, which coexisted with metallic silver. The second system obtained was synergistically interacted metallic and oxidized silver nanoparticles that were distributed on a structurally defective silica network. Their average size was d = (6.6 ± 0.7) nm. Physicochemical and biological experiments showed that the tiny silver nanoparticles in Ag/SiO(2) and Ag/SiO(2)@AS inhibited E. coli, P. aeruginosa, S. aureus, and L. plantarum’s cell growth as well as caused a high anticancer effect. On the other hand, the massive silver nanoparticles of Ag/SiO(2)@CMC had a weaker antimicrobial effect, although they highly interacted against PANC-1. They also generated reactive oxygen species (ROS) as well as the induction of apoptosis via the p53-independent mechanism.