Cargando…

An Ultrahigh Sensitive Paper-Based Pressure Sensor with Intelligent Thermotherapy for Skin-Integrated Electronics

Porous microstructure pressure sensors that are highly sensitive, reliable, low-cost, and environment-friendly have aroused wide attention in intelligent biomedical diagnostics, human–machine interactions, and soft robots. Here, an all-tissue-based piezoresistive pressure sensor with ultrahigh sensi...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Lin, Yu, Junsheng, Li, Ying, Wang, Peiwen, Shu, Jun, Deng, Xiaoyan, Li, Lu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765889/
https://www.ncbi.nlm.nih.gov/pubmed/33348582
http://dx.doi.org/10.3390/nano10122536
Descripción
Sumario:Porous microstructure pressure sensors that are highly sensitive, reliable, low-cost, and environment-friendly have aroused wide attention in intelligent biomedical diagnostics, human–machine interactions, and soft robots. Here, an all-tissue-based piezoresistive pressure sensor with ultrahigh sensitivity and reliability based on the bottom interdigitated tissue electrode and the top bridge of a microporous tissue/carbon nanotube composite was proposed. Such pressure sensors exhibited ultrahigh sensitivity (≈1911.4 kPa(−1)), fast response time (<5 ms), low fatigue of over 2000 loading/unloading cycles, and robust environmental degradability. These enabled sensors can not only monitor the critical physiological signals of the human body but also realize electrothermal conversion at a specific voltage, which enhances the possibility of creating wearable thermotherapy electronics for protecting against rheumatoid arthritis and cervical spondylosis. Furthermore, the sensor successfully transmitted wireless signals to smartphones via Bluetooth, indicating its potential as reliable skin-integrated electronics. This work provides a highly feasible strategy for promoting high-performance wearable thermotherapy electronics for the next-generation artificial skin.