Cargando…
Seasonality Modulates the Cellular Antioxidant Activity and Antiproliferative Effect of Sonoran Desert Propolis
The main chemical composition and pharmacological potential of propolis from arid and semi-arid regions of the Sonoran Desert have been previously reported. Caborca propolis (CP), from an arid zone of the Sonoran Desert, has shown a polyphenolic profile that suggests a mixed plant origin, presenting...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765891/ https://www.ncbi.nlm.nih.gov/pubmed/33348680 http://dx.doi.org/10.3390/antiox9121294 |
_version_ | 1783628588351750144 |
---|---|
author | Mendez-Pfeiffer, Pablo Alday, Efrain Carreño, Ana Laura Hernández-Tánori, Jorge Montaño-Leyva, Beatriz Ortega-García, Jesús Valdez, Judith Garibay-Escobar, Adriana Hernandez, Javier Valencia, Dora Velazquez, Carlos |
author_facet | Mendez-Pfeiffer, Pablo Alday, Efrain Carreño, Ana Laura Hernández-Tánori, Jorge Montaño-Leyva, Beatriz Ortega-García, Jesús Valdez, Judith Garibay-Escobar, Adriana Hernandez, Javier Valencia, Dora Velazquez, Carlos |
author_sort | Mendez-Pfeiffer, Pablo |
collection | PubMed |
description | The main chemical composition and pharmacological potential of propolis from arid and semi-arid regions of the Sonoran Desert have been previously reported. Caborca propolis (CP), from an arid zone of the Sonoran Desert, has shown a polyphenolic profile that suggests a mixed plant origin, presenting poplar-type markers, as well as a 6-methoxylated flavonoid, xanthomicrol, characteristic of Asteraceae plants. In addition, CP has shown significant antioxidant properties and antiproliferative activity on cancer cells. In this study, we analyzed the influence of collection time on the chemical constitution, antiproliferative activity and protective capacity of CP against reactive oxygen species (ROS), by using HPLC–UV–diode array detection (DAD) analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-Dimethyltetrazoliumbromide (MTT) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays, as well as cellular antioxidant activity (CAA) assay on murine B-cell lymphoma M12.C3.F6 cells. HPLC–UV–DAD analyses of seasonally collected CP (one-year period) revealed quantitative differences among the most abundant CP constituents: pinocembrin, galangin, chrysin and pinobanksin-3-O-acetate. Though all seasonal samples of CP induced an antiproliferative effect in M12.C3.F6 cells, CP from autumn showed the highest inhibitory activity (IC(50): 5.9 ± 0.6 µg/mL). The DPPH assay pointed out that CP collected in autumn presented the highest antioxidant potential (IC(50): 58.8 ± 6.7 µg/mL), followed by winter (65.7 ± 12.2 µg/mL) and spring (67.0 ± 7.5 µg/mL); meanwhile, the summer sample showed a lesser antioxidant capacity (IC(50): 98.7 ± 2.5 µg/mL). The CAA assay demonstrated that CP induced a significant protective effect against ROS production elicited by H(2)O(2) in M12.C3.F6 cells. Pretreatment of M12.C3.F6 cells with CP from spring and autumn (25 and 50 µg/mL for 1 h) showed the highest reduction in intracellular ROS induced by H(2)O(2) (1 and 5 mM). These results indicate that the antiproliferative effect and cellular antioxidant activity of CP are modulated by quantitative fluctuations in its polyphenolic profile due to its collection time. |
format | Online Article Text |
id | pubmed-7765891 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77658912020-12-28 Seasonality Modulates the Cellular Antioxidant Activity and Antiproliferative Effect of Sonoran Desert Propolis Mendez-Pfeiffer, Pablo Alday, Efrain Carreño, Ana Laura Hernández-Tánori, Jorge Montaño-Leyva, Beatriz Ortega-García, Jesús Valdez, Judith Garibay-Escobar, Adriana Hernandez, Javier Valencia, Dora Velazquez, Carlos Antioxidants (Basel) Article The main chemical composition and pharmacological potential of propolis from arid and semi-arid regions of the Sonoran Desert have been previously reported. Caborca propolis (CP), from an arid zone of the Sonoran Desert, has shown a polyphenolic profile that suggests a mixed plant origin, presenting poplar-type markers, as well as a 6-methoxylated flavonoid, xanthomicrol, characteristic of Asteraceae plants. In addition, CP has shown significant antioxidant properties and antiproliferative activity on cancer cells. In this study, we analyzed the influence of collection time on the chemical constitution, antiproliferative activity and protective capacity of CP against reactive oxygen species (ROS), by using HPLC–UV–diode array detection (DAD) analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-Dimethyltetrazoliumbromide (MTT) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays, as well as cellular antioxidant activity (CAA) assay on murine B-cell lymphoma M12.C3.F6 cells. HPLC–UV–DAD analyses of seasonally collected CP (one-year period) revealed quantitative differences among the most abundant CP constituents: pinocembrin, galangin, chrysin and pinobanksin-3-O-acetate. Though all seasonal samples of CP induced an antiproliferative effect in M12.C3.F6 cells, CP from autumn showed the highest inhibitory activity (IC(50): 5.9 ± 0.6 µg/mL). The DPPH assay pointed out that CP collected in autumn presented the highest antioxidant potential (IC(50): 58.8 ± 6.7 µg/mL), followed by winter (65.7 ± 12.2 µg/mL) and spring (67.0 ± 7.5 µg/mL); meanwhile, the summer sample showed a lesser antioxidant capacity (IC(50): 98.7 ± 2.5 µg/mL). The CAA assay demonstrated that CP induced a significant protective effect against ROS production elicited by H(2)O(2) in M12.C3.F6 cells. Pretreatment of M12.C3.F6 cells with CP from spring and autumn (25 and 50 µg/mL for 1 h) showed the highest reduction in intracellular ROS induced by H(2)O(2) (1 and 5 mM). These results indicate that the antiproliferative effect and cellular antioxidant activity of CP are modulated by quantitative fluctuations in its polyphenolic profile due to its collection time. MDPI 2020-12-17 /pmc/articles/PMC7765891/ /pubmed/33348680 http://dx.doi.org/10.3390/antiox9121294 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mendez-Pfeiffer, Pablo Alday, Efrain Carreño, Ana Laura Hernández-Tánori, Jorge Montaño-Leyva, Beatriz Ortega-García, Jesús Valdez, Judith Garibay-Escobar, Adriana Hernandez, Javier Valencia, Dora Velazquez, Carlos Seasonality Modulates the Cellular Antioxidant Activity and Antiproliferative Effect of Sonoran Desert Propolis |
title | Seasonality Modulates the Cellular Antioxidant Activity and Antiproliferative Effect of Sonoran Desert Propolis |
title_full | Seasonality Modulates the Cellular Antioxidant Activity and Antiproliferative Effect of Sonoran Desert Propolis |
title_fullStr | Seasonality Modulates the Cellular Antioxidant Activity and Antiproliferative Effect of Sonoran Desert Propolis |
title_full_unstemmed | Seasonality Modulates the Cellular Antioxidant Activity and Antiproliferative Effect of Sonoran Desert Propolis |
title_short | Seasonality Modulates the Cellular Antioxidant Activity and Antiproliferative Effect of Sonoran Desert Propolis |
title_sort | seasonality modulates the cellular antioxidant activity and antiproliferative effect of sonoran desert propolis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765891/ https://www.ncbi.nlm.nih.gov/pubmed/33348680 http://dx.doi.org/10.3390/antiox9121294 |
work_keys_str_mv | AT mendezpfeifferpablo seasonalitymodulatesthecellularantioxidantactivityandantiproliferativeeffectofsonorandesertpropolis AT aldayefrain seasonalitymodulatesthecellularantioxidantactivityandantiproliferativeeffectofsonorandesertpropolis AT carrenoanalaura seasonalitymodulatesthecellularantioxidantactivityandantiproliferativeeffectofsonorandesertpropolis AT hernandeztanorijorge seasonalitymodulatesthecellularantioxidantactivityandantiproliferativeeffectofsonorandesertpropolis AT montanoleyvabeatriz seasonalitymodulatesthecellularantioxidantactivityandantiproliferativeeffectofsonorandesertpropolis AT ortegagarciajesus seasonalitymodulatesthecellularantioxidantactivityandantiproliferativeeffectofsonorandesertpropolis AT valdezjudith seasonalitymodulatesthecellularantioxidantactivityandantiproliferativeeffectofsonorandesertpropolis AT garibayescobaradriana seasonalitymodulatesthecellularantioxidantactivityandantiproliferativeeffectofsonorandesertpropolis AT hernandezjavier seasonalitymodulatesthecellularantioxidantactivityandantiproliferativeeffectofsonorandesertpropolis AT valenciadora seasonalitymodulatesthecellularantioxidantactivityandantiproliferativeeffectofsonorandesertpropolis AT velazquezcarlos seasonalitymodulatesthecellularantioxidantactivityandantiproliferativeeffectofsonorandesertpropolis |