Cargando…

Forecast Model Update Based on a Real-Time Data Processing Lambda Architecture for Estimating Partial Discharges in Hydrogenerator

The prediction of partial discharges in hydrogenerators depends on data collected by sensors and prediction models based on artificial intelligence. However, forecasting models are trained with a set of historical data that is not automatically updated due to the high cost to collect sensors’ data a...

Descripción completa

Detalles Bibliográficos
Autores principales: Pereira, Fabio Henrique, Bezerra, Francisco Elânio, Oliva, Diego, de Souza, G.F.M., Chabu, Ivan Eduardo, Santos, Josemir Coelho, Junior, Shigueru Nagao, Nabeta, Silvio Ikuyo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765954/
https://www.ncbi.nlm.nih.gov/pubmed/33348733
http://dx.doi.org/10.3390/s20247242
_version_ 1783628603593850880
author Pereira, Fabio Henrique
Bezerra, Francisco Elânio
Oliva, Diego
de Souza, G.F.M.
Chabu, Ivan Eduardo
Santos, Josemir Coelho
Junior, Shigueru Nagao
Nabeta, Silvio Ikuyo
author_facet Pereira, Fabio Henrique
Bezerra, Francisco Elânio
Oliva, Diego
de Souza, G.F.M.
Chabu, Ivan Eduardo
Santos, Josemir Coelho
Junior, Shigueru Nagao
Nabeta, Silvio Ikuyo
author_sort Pereira, Fabio Henrique
collection PubMed
description The prediction of partial discharges in hydrogenerators depends on data collected by sensors and prediction models based on artificial intelligence. However, forecasting models are trained with a set of historical data that is not automatically updated due to the high cost to collect sensors’ data and insufficient real-time data analysis. This article proposes a method to update the forecasting model, aiming to improve its accuracy. The method is based on a distributed data platform with the lambda architecture, which combines real-time and batch processing techniques. The results show that the proposed system enables real-time updates to be made to the forecasting model, allowing partial discharge forecasts to be improved with each update with increasing accuracy.
format Online
Article
Text
id pubmed-7765954
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77659542020-12-28 Forecast Model Update Based on a Real-Time Data Processing Lambda Architecture for Estimating Partial Discharges in Hydrogenerator Pereira, Fabio Henrique Bezerra, Francisco Elânio Oliva, Diego de Souza, G.F.M. Chabu, Ivan Eduardo Santos, Josemir Coelho Junior, Shigueru Nagao Nabeta, Silvio Ikuyo Sensors (Basel) Article The prediction of partial discharges in hydrogenerators depends on data collected by sensors and prediction models based on artificial intelligence. However, forecasting models are trained with a set of historical data that is not automatically updated due to the high cost to collect sensors’ data and insufficient real-time data analysis. This article proposes a method to update the forecasting model, aiming to improve its accuracy. The method is based on a distributed data platform with the lambda architecture, which combines real-time and batch processing techniques. The results show that the proposed system enables real-time updates to be made to the forecasting model, allowing partial discharge forecasts to be improved with each update with increasing accuracy. MDPI 2020-12-17 /pmc/articles/PMC7765954/ /pubmed/33348733 http://dx.doi.org/10.3390/s20247242 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pereira, Fabio Henrique
Bezerra, Francisco Elânio
Oliva, Diego
de Souza, G.F.M.
Chabu, Ivan Eduardo
Santos, Josemir Coelho
Junior, Shigueru Nagao
Nabeta, Silvio Ikuyo
Forecast Model Update Based on a Real-Time Data Processing Lambda Architecture for Estimating Partial Discharges in Hydrogenerator
title Forecast Model Update Based on a Real-Time Data Processing Lambda Architecture for Estimating Partial Discharges in Hydrogenerator
title_full Forecast Model Update Based on a Real-Time Data Processing Lambda Architecture for Estimating Partial Discharges in Hydrogenerator
title_fullStr Forecast Model Update Based on a Real-Time Data Processing Lambda Architecture for Estimating Partial Discharges in Hydrogenerator
title_full_unstemmed Forecast Model Update Based on a Real-Time Data Processing Lambda Architecture for Estimating Partial Discharges in Hydrogenerator
title_short Forecast Model Update Based on a Real-Time Data Processing Lambda Architecture for Estimating Partial Discharges in Hydrogenerator
title_sort forecast model update based on a real-time data processing lambda architecture for estimating partial discharges in hydrogenerator
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765954/
https://www.ncbi.nlm.nih.gov/pubmed/33348733
http://dx.doi.org/10.3390/s20247242
work_keys_str_mv AT pereirafabiohenrique forecastmodelupdatebasedonarealtimedataprocessinglambdaarchitectureforestimatingpartialdischargesinhydrogenerator
AT bezerrafranciscoelanio forecastmodelupdatebasedonarealtimedataprocessinglambdaarchitectureforestimatingpartialdischargesinhydrogenerator
AT olivadiego forecastmodelupdatebasedonarealtimedataprocessinglambdaarchitectureforestimatingpartialdischargesinhydrogenerator
AT desouzagfm forecastmodelupdatebasedonarealtimedataprocessinglambdaarchitectureforestimatingpartialdischargesinhydrogenerator
AT chabuivaneduardo forecastmodelupdatebasedonarealtimedataprocessinglambdaarchitectureforestimatingpartialdischargesinhydrogenerator
AT santosjosemircoelho forecastmodelupdatebasedonarealtimedataprocessinglambdaarchitectureforestimatingpartialdischargesinhydrogenerator
AT juniorshiguerunagao forecastmodelupdatebasedonarealtimedataprocessinglambdaarchitectureforestimatingpartialdischargesinhydrogenerator
AT nabetasilvioikuyo forecastmodelupdatebasedonarealtimedataprocessinglambdaarchitectureforestimatingpartialdischargesinhydrogenerator