Cargando…

Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos

The application of segmentation methods to medical imaging has the potential to create novel diagnostic support models. With respect to fetal ultrasound, the thoracic wall is a key structure on the assessment of the chest region for examiners to recognize the relative orientation and size of structu...

Descripción completa

Detalles Bibliográficos
Autores principales: Shozu, Kanto, Komatsu, Masaaki, Sakai, Akira, Komatsu, Reina, Dozen, Ai, Machino, Hidenori, Yasutomi, Suguru, Arakaki, Tatsuya, Asada, Ken, Kaneko, Syuzo, Matsuoka, Ryu, Nakashima, Akitoshi, Sekizawa, Akihiko, Hamamoto, Ryuji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766150/
https://www.ncbi.nlm.nih.gov/pubmed/33348873
http://dx.doi.org/10.3390/biom10121691
_version_ 1783628650257580032
author Shozu, Kanto
Komatsu, Masaaki
Sakai, Akira
Komatsu, Reina
Dozen, Ai
Machino, Hidenori
Yasutomi, Suguru
Arakaki, Tatsuya
Asada, Ken
Kaneko, Syuzo
Matsuoka, Ryu
Nakashima, Akitoshi
Sekizawa, Akihiko
Hamamoto, Ryuji
author_facet Shozu, Kanto
Komatsu, Masaaki
Sakai, Akira
Komatsu, Reina
Dozen, Ai
Machino, Hidenori
Yasutomi, Suguru
Arakaki, Tatsuya
Asada, Ken
Kaneko, Syuzo
Matsuoka, Ryu
Nakashima, Akitoshi
Sekizawa, Akihiko
Hamamoto, Ryuji
author_sort Shozu, Kanto
collection PubMed
description The application of segmentation methods to medical imaging has the potential to create novel diagnostic support models. With respect to fetal ultrasound, the thoracic wall is a key structure on the assessment of the chest region for examiners to recognize the relative orientation and size of structures inside the thorax, which are critical components in neonatal prognosis. In this study, to improve the segmentation performance of the thoracic wall in fetal ultrasound videos, we proposed a novel model-agnostic method using deep learning techniques: the Multi-Frame + Cylinder method (MFCY). The Multi-frame method (MF) uses time-series information of ultrasound videos, and the Cylinder method (CY) utilizes the shape of the thoracic wall. To evaluate the achieved improvement, we performed segmentation using five-fold cross-validation on 538 ultrasound frames in the four-chamber view (4CV) of 256 normal cases using U-net and DeepLabv3+. MFCY increased the mean values of the intersection over union (IoU) of thoracic wall segmentation from 0.448 to 0.493 for U-net and from 0.417 to 0.470 for DeepLabv3+. These results demonstrated that MFCY improved the segmentation performance of the thoracic wall in fetal ultrasound videos without altering the network structure. MFCY is expected to facilitate the development of diagnostic support models in fetal ultrasound by providing further accurate segmentation of the thoracic wall.
format Online
Article
Text
id pubmed-7766150
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77661502020-12-28 Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos Shozu, Kanto Komatsu, Masaaki Sakai, Akira Komatsu, Reina Dozen, Ai Machino, Hidenori Yasutomi, Suguru Arakaki, Tatsuya Asada, Ken Kaneko, Syuzo Matsuoka, Ryu Nakashima, Akitoshi Sekizawa, Akihiko Hamamoto, Ryuji Biomolecules Article The application of segmentation methods to medical imaging has the potential to create novel diagnostic support models. With respect to fetal ultrasound, the thoracic wall is a key structure on the assessment of the chest region for examiners to recognize the relative orientation and size of structures inside the thorax, which are critical components in neonatal prognosis. In this study, to improve the segmentation performance of the thoracic wall in fetal ultrasound videos, we proposed a novel model-agnostic method using deep learning techniques: the Multi-Frame + Cylinder method (MFCY). The Multi-frame method (MF) uses time-series information of ultrasound videos, and the Cylinder method (CY) utilizes the shape of the thoracic wall. To evaluate the achieved improvement, we performed segmentation using five-fold cross-validation on 538 ultrasound frames in the four-chamber view (4CV) of 256 normal cases using U-net and DeepLabv3+. MFCY increased the mean values of the intersection over union (IoU) of thoracic wall segmentation from 0.448 to 0.493 for U-net and from 0.417 to 0.470 for DeepLabv3+. These results demonstrated that MFCY improved the segmentation performance of the thoracic wall in fetal ultrasound videos without altering the network structure. MFCY is expected to facilitate the development of diagnostic support models in fetal ultrasound by providing further accurate segmentation of the thoracic wall. MDPI 2020-12-17 /pmc/articles/PMC7766150/ /pubmed/33348873 http://dx.doi.org/10.3390/biom10121691 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Shozu, Kanto
Komatsu, Masaaki
Sakai, Akira
Komatsu, Reina
Dozen, Ai
Machino, Hidenori
Yasutomi, Suguru
Arakaki, Tatsuya
Asada, Ken
Kaneko, Syuzo
Matsuoka, Ryu
Nakashima, Akitoshi
Sekizawa, Akihiko
Hamamoto, Ryuji
Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos
title Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos
title_full Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos
title_fullStr Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos
title_full_unstemmed Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos
title_short Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos
title_sort model-agnostic method for thoracic wall segmentation in fetal ultrasound videos
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766150/
https://www.ncbi.nlm.nih.gov/pubmed/33348873
http://dx.doi.org/10.3390/biom10121691
work_keys_str_mv AT shozukanto modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos
AT komatsumasaaki modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos
AT sakaiakira modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos
AT komatsureina modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos
AT dozenai modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos
AT machinohidenori modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos
AT yasutomisuguru modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos
AT arakakitatsuya modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos
AT asadaken modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos
AT kanekosyuzo modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos
AT matsuokaryu modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos
AT nakashimaakitoshi modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos
AT sekizawaakihiko modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos
AT hamamotoryuji modelagnosticmethodforthoracicwallsegmentationinfetalultrasoundvideos