Cargando…
Deep Learning Prediction of Cancer Prevalence from Satellite Imagery
SIMPLE SUMMARY: Cancer prevalence estimates are used to guide policymaking, from prevention to screening programs. However, these data are only available for 28% of the U.S. population. We used deep learning to analyze satellite imagery in order to predict cancer prevalence with a high spatial resol...
Autores principales: | Bibault, Jean-Emmanuel, Bassenne, Maxime, Ren, Hongyi, Xing, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766226/ https://www.ncbi.nlm.nih.gov/pubmed/33352801 http://dx.doi.org/10.3390/cancers12123844 |
Ejemplares similares
-
Deep Learning for satellite imagery
por: Boget, Yoann
Publicado: (2019) -
Deep Learning for Understanding Satellite Imagery: An Experimental Survey
por: Mohanty, Sharada Prasanna, et al.
Publicado: (2020) -
Aerial-trained deep learning networks for surveying cetaceans from satellite imagery
por: Borowicz, Alex, et al.
Publicado: (2019) -
Mining and Tailings Dam Detection in Satellite Imagery Using Deep Learning
por: Balaniuk, Remis, et al.
Publicado: (2020) -
Deep learning-based object recognition in multispectral satellite imagery for real-time applications
por: Gudžius, Povilas, et al.
Publicado: (2021)