Cargando…
InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection
Electroencephalogram (EEG) is an effective indicator for the detection of driver fatigue. Due to the significant differences in EEG signals across subjects, and difficulty in collecting sufficient EEG samples for analysis during driving, detecting fatigue across subjects through using EEG signals re...
Autores principales: | Zeng, Hong, Zhang, Jiaming, Zakaria, Wael, Babiloni, Fabio, Gianluca, Borghini, Li, Xiufeng, Kong, Wanzeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766235/ https://www.ncbi.nlm.nih.gov/pubmed/33348823 http://dx.doi.org/10.3390/s20247251 |
Ejemplares similares
-
An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction
por: Zeng, Hong, et al.
Publicado: (2021) -
Label-Based Alignment Multi-Source Domain Adaptation for Cross-Subject EEG Fatigue Mental State Evaluation
por: Zhao, Yue, et al.
Publicado: (2021) -
Investigating Driver Fatigue versus Alertness Using the Granger Causality Network
por: Kong, Wanzeng, et al.
Publicado: (2015) -
EEG-Based Index for Timely Detecting User’s Drowsiness Occurrence in Automotive Applications
por: Di Flumeri, Gianluca, et al.
Publicado: (2022) -
A LightGBM-Based EEG Analysis Method for Driver Mental States Classification
por: Zeng, Hong, et al.
Publicado: (2019)