Cargando…

Utility of Circulating Tumor DNA in Different Clinical Scenarios of Breast Cancer

SIMPLE SUMMARY: This review is focused on the concept of a specific type of “liquid biopsy”, circulating cell-free tumor DNA (ctDNA). It explores the advantages and limitations of using this technique and the latest advances of using it in different clinical scenarios of breast cancer: early, metast...

Descripción completa

Detalles Bibliográficos
Autores principales: Mesquita, Alexandra, Costa, José Luís, Schmitt, Fernando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766337/
https://www.ncbi.nlm.nih.gov/pubmed/33339259
http://dx.doi.org/10.3390/cancers12123797
Descripción
Sumario:SIMPLE SUMMARY: This review is focused on the concept of a specific type of “liquid biopsy”, circulating cell-free tumor DNA (ctDNA). It explores the advantages and limitations of using this technique and the latest advances of using it in different clinical scenarios of breast cancer: early, metastatic, and locally advanced disease. It provides the latest advances in this area applied to clinical research and clinical practice, as well as the importance of the collaboration between clinicians and laboratory teams to fully grasp the potential of ctDNA in a precision medicine era. ABSTRACT: Breast cancer is a complex disease whose molecular mechanisms are not completely understood. Developing target therapies is a promising approach. Therefore, understanding the biological behavior of the tumor is a challenge. Tissue biopsy in the metastatic setting remains the standard method for diagnosis. Nevertheless, it has been associated with some disadvantages: It is an invasive procedure, it may not represent tumor heterogeneity, and it does not allow for treatment efficacy to be assessed or early recurrences to be detected. Analysis of circulating tumor DNA (ctDNA) may help to overcome this as it is a non-invasive method of monitoring the disease. In early-stage disease, it can detect early recurrences and monitor tumors’ genomic profiles, identifying the emergence of new genetic alterations which can be related to tumor-acquired resistance. In the metastatic setting, the analysis of ctDNA may also allow for the anticipation of clinical and radiological progression of the disease, selection of targeted therapies, and for a photogram of tumor heterogeneity to be provided. It may also detect disease progression earlier in locally advanced tumors submitted to neoadjuvant treatment, and identify minimal residual disease. ctDNA analysis may guide clinical decision-making in different scenarios, in a precision medicine era, once it acts as a repository of genetic tumor material, allowing for a comprehensive mutation profiling analysis. In this review, we focused on recent advances towards the implementation of ctDNA in a clinical routine for breast cancer.