Cargando…
Robust Building Extraction for High Spatial Resolution Remote Sensing Images with Self-Attention Network
Building extraction from high spatial resolution remote sensing images is a hot spot in the field of remote sensing applications and computer vision. This paper presents a semantic segmentation model, which is a supervised method, named Pyramid Self-Attention Network (PISANet). Its structure is simp...
Autores principales: | Zhou, Dengji, Wang, Guizhou, He, Guojin, Long, Tengfei, Yin, Ranyu, Zhang, Zhaoming, Chen, Sibao, Luo, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766463/ https://www.ncbi.nlm.nih.gov/pubmed/33348752 http://dx.doi.org/10.3390/s20247241 |
Ejemplares similares
-
A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification
por: Wang, Guizhou, et al.
Publicado: (2013) -
Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution
por: Jiang, Wei, et al.
Publicado: (2018) -
AGs-Unet: Building Extraction Model for High Resolution Remote Sensing Images Based on Attention Gates U Network
por: Yu, Mingyang, et al.
Publicado: (2022) -
An Efficient Building Extraction Method from High Spatial Resolution Remote Sensing Images Based on Improved Mask R-CNN
por: Zhang, Lili, et al.
Publicado: (2020) -
Eliminating the Effect of Image Border with Image Periodic Decomposition for Phase Correlation Based Remote Sensing Image Registration †
por: Dong, Yunyun, et al.
Publicado: (2019)