Cargando…
Hardware-Based Hopfield Neuromorphic Computing for Fall Detection
With the popularity of smart wearable systems, sensor signal processing poses more challenges to machine learning in embedded scenarios. For example, traditional machine-learning methods for data classification, especially in real time, are computationally intensive. The deployment of Artificial Int...
Autores principales: | Yu, Zheqi, Zahid, Adnan, Ansari, Shuja, Abbas, Hasan, Abdulghani, Amir M., Heidari, Hadi, Imran, Muhammad A., Abbasi, Qammer H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766472/ https://www.ncbi.nlm.nih.gov/pubmed/33348587 http://dx.doi.org/10.3390/s20247226 |
Ejemplares similares
-
Public Perception of the Fifth Generation of Cellular Networks (5G) on Social Media
por: Dashtipour, Kia, et al.
Publicado: (2021) -
Machine learning driven non-invasive approach of water content estimation in living plant leaves using terahertz waves
por: Zahid, Adnan, et al.
Publicado: (2019) -
Multi-state MRAM cells for hardware neuromorphic computing
por: Rzeszut, Piotr, et al.
Publicado: (2022) -
Neuromorphic Hardware Learns to Learn
por: Bohnstingl, Thomas, et al.
Publicado: (2019) -
Suitability of NB-IoT for Indoor Industrial Environment: A Survey and Insights
por: Dangana, Muhammad, et al.
Publicado: (2021)