Cargando…
The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt
Pure polycrystalline cobalt is systematically thermally treated in order to assess the effect of the microstructure on the compression behavior. Isothermal annealing of the as-drawn material leads to recrystallization and grain growth dependent on the annealing temperature (600–1100 [Formula: see te...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766495/ https://www.ncbi.nlm.nih.gov/pubmed/33348844 http://dx.doi.org/10.3390/ma13245775 |
_version_ | 1783628732470132736 |
---|---|
author | Knapek, Michal Minárik, Peter Dobroň, Patrik Šmilauerová, Jana Celis, Mayerling Martinez Hug, Eric Chmelík, František |
author_facet | Knapek, Michal Minárik, Peter Dobroň, Patrik Šmilauerová, Jana Celis, Mayerling Martinez Hug, Eric Chmelík, František |
author_sort | Knapek, Michal |
collection | PubMed |
description | Pure polycrystalline cobalt is systematically thermally treated in order to assess the effect of the microstructure on the compression behavior. Isothermal annealing of the as-drawn material leads to recrystallization and grain growth dependent on the annealing temperature (600–1100 [Formula: see text] C). Consequently, the yield strength decreases and the fracture strain increases as a function of rising grain size; the content of the residual fcc phase is ~6–11%. Subsequent thermal cycling around the transition temperature is applied to further modify the microstructure, especially in terms of the fcc phase content. With the increasing number of cycles, the grain size further increases and the fraction of the fcc phase significantly drops. At the same time, the values of both the yield strength and fracture strain somewhat decrease. An atypical decrease in the fracture strain as a function of grain size is explained in terms of decreasing fcc phase content; the stress-induced fcc→hcp transformation can accommodate a significant amount of plastic strain. Besides controlling basic material parameters (e.g., grain size and texture), adjusting the content of the fcc phase can thus provide an effective means of mechanical performance optimization with respect to particular applications. |
format | Online Article Text |
id | pubmed-7766495 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77664952020-12-28 The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt Knapek, Michal Minárik, Peter Dobroň, Patrik Šmilauerová, Jana Celis, Mayerling Martinez Hug, Eric Chmelík, František Materials (Basel) Article Pure polycrystalline cobalt is systematically thermally treated in order to assess the effect of the microstructure on the compression behavior. Isothermal annealing of the as-drawn material leads to recrystallization and grain growth dependent on the annealing temperature (600–1100 [Formula: see text] C). Consequently, the yield strength decreases and the fracture strain increases as a function of rising grain size; the content of the residual fcc phase is ~6–11%. Subsequent thermal cycling around the transition temperature is applied to further modify the microstructure, especially in terms of the fcc phase content. With the increasing number of cycles, the grain size further increases and the fraction of the fcc phase significantly drops. At the same time, the values of both the yield strength and fracture strain somewhat decrease. An atypical decrease in the fracture strain as a function of grain size is explained in terms of decreasing fcc phase content; the stress-induced fcc→hcp transformation can accommodate a significant amount of plastic strain. Besides controlling basic material parameters (e.g., grain size and texture), adjusting the content of the fcc phase can thus provide an effective means of mechanical performance optimization with respect to particular applications. MDPI 2020-12-17 /pmc/articles/PMC7766495/ /pubmed/33348844 http://dx.doi.org/10.3390/ma13245775 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Knapek, Michal Minárik, Peter Dobroň, Patrik Šmilauerová, Jana Celis, Mayerling Martinez Hug, Eric Chmelík, František The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt |
title | The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt |
title_full | The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt |
title_fullStr | The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt |
title_full_unstemmed | The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt |
title_short | The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt |
title_sort | effect of different thermal treatment on the allotropic fcc↔hcp transformation and compression behavior of polycrystalline cobalt |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766495/ https://www.ncbi.nlm.nih.gov/pubmed/33348844 http://dx.doi.org/10.3390/ma13245775 |
work_keys_str_mv | AT knapekmichal theeffectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt AT minarikpeter theeffectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt AT dobronpatrik theeffectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt AT smilauerovajana theeffectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt AT celismayerlingmartinez theeffectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt AT hugeric theeffectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt AT chmelikfrantisek theeffectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt AT knapekmichal effectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt AT minarikpeter effectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt AT dobronpatrik effectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt AT smilauerovajana effectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt AT celismayerlingmartinez effectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt AT hugeric effectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt AT chmelikfrantisek effectofdifferentthermaltreatmentontheallotropicfcchcptransformationandcompressionbehaviorofpolycrystallinecobalt |