Cargando…

Local Vascularization during Orthodontic Tooth Movement in a Split Mouth Rat Model—A MRI Study

Orthodontic tooth movement to therapeutically align malpositioned teeth is supposed to impact blood flow in the surrounding tissues. Here, we evaluated actual vascularization in the tension area of the periodontal ligament during experimental tooth movement in rats (N = 8) with magnetic resonance im...

Descripción completa

Detalles Bibliográficos
Autores principales: Proff, Peter, Schröder, Agnes, Seyler, Lisa, Wolf, Franziska, Korkmaz, Yüksel, Bäuerle, Tobias, Gölz, Lina, Kirschneck, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766506/
https://www.ncbi.nlm.nih.gov/pubmed/33352746
http://dx.doi.org/10.3390/biomedicines8120632
Descripción
Sumario:Orthodontic tooth movement to therapeutically align malpositioned teeth is supposed to impact blood flow in the surrounding tissues. Here, we evaluated actual vascularization in the tension area of the periodontal ligament during experimental tooth movement in rats (N = 8) with magnetic resonance imaging (MRI). We inserted an elastic band between the left upper first and the second rat molar; the right side was not treated and served as control. After four days of tooth movement, we recorded T1-weighted morphologic and dynamic-contrast-enhanced MRI sequences with an animal-specific 7 Tesla MRI to assess of local vascularization. Furthermore, we quantified osteoclasts and monocytes in the periodontal ligament, which are crucial for orthodontic tooth movement, root resorptions as undesirable side effects, as well as the extent of tooth movement using paraffine histology and micro-CT analysis. Data were tested for normal distribution with Shapiro–Wilk tests followed by either a two-tailed paired t-test or a Wilcoxon matched-pairs signed rank test. Significant orthodontic tooth movement was induced within the four days of treatment, as evidenced by increased osteoclast and monocyte activity in the periodontal ligament as well as by µCT analysis. Contrast enhancement was increased at the orthodontically-treated side distally of the moved upper first left molar, indicating increased vascularization at the tension side of the periodontal ligament. Accordingly, we detected reduced time-to-peak and washout rates. Our study using MRI to directly assess local vascularization thus seems to confirm the hypothesis that perfusion is enhanced in tension zones of the periodontal ligament during orthodontic tooth movement.