Cargando…
Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges
The detection of product defects is essential in quality control in manufacturing. This study surveys stateoftheart deep-learning methods in defect detection. First, we classify the defects of products, such as electronic components, pipes, welded parts, and textile materials, into categories. Secon...
Autores principales: | Yang, Jing, Li, Shaobo, Wang, Zheng, Dong, Hao, Wang, Jun, Tang, Shihao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766692/ https://www.ncbi.nlm.nih.gov/pubmed/33339413 http://dx.doi.org/10.3390/ma13245755 |
Ejemplares similares
-
Deep Learning Applied to Defect Detection in Powder Spreading Process of Magnetic Material Additive Manufacturing
por: Chen, Hsin-Yu, et al.
Publicado: (2022) -
Defect detection of gear parts in virtual manufacturing
por: Xu, Zhenxing, et al.
Publicado: (2023) -
End-to-end deep learning framework for printed circuit board manufacturing defect classification
por: Bhattacharya, Abhiroop, et al.
Publicado: (2022) -
Automatic detection and classification of manufacturing defects in metal boxes using deep neural networks
por: Essid, Oumayma, et al.
Publicado: (2018) -
Deep Active Learning for Surface Defect Detection
por: Lv, Xiaoming, et al.
Publicado: (2020)