Cargando…
Examining the Causal Structures of Deep Neural Networks Using Information Theory
Deep Neural Networks (DNNs) are often examined at the level of their response to input, such as analyzing the mutual information between nodes and data sets. Yet DNNs can also be examined at the level of causation, exploring “what does what” within the layers of the network itself. Historically, ana...
Autores principales: | Marrow, Scythia, Michaud, Eric J., Hoel, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766755/ https://www.ncbi.nlm.nih.gov/pubmed/33353094 http://dx.doi.org/10.3390/e22121429 |
Ejemplares similares
-
Causal Geometry
por: Chvykov, Pavel, et al.
Publicado: (2020) -
Emergence as the conversion of information: a unifying theory
por: Varley, Thomas F., et al.
Publicado: (2022) -
What Caused What? A Quantitative Account of Actual Causation Using Dynamical Causal Networks
por: Albantakis, Larissa, et al.
Publicado: (2019) -
Incorporating causality in energy consumption forecasting using deep neural networks
por: Sharma, Kshitij, et al.
Publicado: (2022) -
Determining Causal Skeletons with Information Theory
por: Sigtermans, David
Publicado: (2020)