Cargando…
EEG-Based Emotion Classification for Alzheimer’s Disease Patients Using Conventional Machine Learning and Recurrent Neural Network Models
As the number of patients with Alzheimer’s disease (AD) increases, the effort needed to care for these patients increases as well. At the same time, advances in information and sensor technologies have reduced caring costs, providing a potential pathway for developing healthcare services for AD pati...
Autores principales: | Seo, Jungryul, Laine, Teemu H., Oh, Gyuhwan, Sohn, Kyung-Ah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766766/ https://www.ncbi.nlm.nih.gov/pubmed/33339334 http://dx.doi.org/10.3390/s20247212 |
Ejemplares similares
-
An Exploration of Machine Learning Methods for Robust Boredom Classification Using EEG and GSR Data
por: Seo, Jungryul, et al.
Publicado: (2019) -
Data Collection Framework for Context-Aware Virtual Reality Application Development in Unity: Case of Avatar Embodiment
por: Moon, Jiyoung, et al.
Publicado: (2022) -
Applying machine learning EEG signal classification to emotion‑related brain anticipatory activity
por: Bilucaglia, Marco, et al.
Publicado: (2021) -
EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder
por: Liu, Junxiu, et al.
Publicado: (2020) -
EEG-Based Emotion Classification Using Improved Cross-Connected Convolutional Neural Network
por: Dai, Jinxiao, et al.
Publicado: (2022)