Cargando…
Aqueous Two-Phase System Extraction of Polyketide-Based Fungal Pigments Using Ammonium- or Imidazolium-Based Ionic Liquids for Detection Purpose: A Case Study
Demand for microbial colorants is now becoming a competitive research topic for food, cosmetics and pharmaceutics industries. In most applications, the pigments of interest such as polyketide-based red pigments from fungal submerged cultures are extracted by conventional liquid–liquid extraction met...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766805/ https://www.ncbi.nlm.nih.gov/pubmed/33352851 http://dx.doi.org/10.3390/jof6040375 |
Sumario: | Demand for microbial colorants is now becoming a competitive research topic for food, cosmetics and pharmaceutics industries. In most applications, the pigments of interest such as polyketide-based red pigments from fungal submerged cultures are extracted by conventional liquid–liquid extraction methods requiring large volumes of various organic solvents and time. To address this question from a different angle, we proposed, here, to investigate the use of three different aqueous two-phase extraction systems using either ammonium- or imidazolium-based ionic liquids. We applied these to four fermentation broths of Talaromyces albobiverticillius (deep red pigment producer), Emericella purpurea (red pigment producer), Paecilomyces marquandii (yellow pigment producer) and Trichoderma harzianum (yellow-brown pigment producer) to investigate their selective extraction abilities towards the detection of polyketide-based pigments. Our findings led us to conclude that (i) these alternative extraction systems using ionic liquids as greener extractant means worked well for this extraction of colored molecules from the fermentation broths of the filamentous fungi investigated here; (ii) tetrabutylammonium bromide, [N4444]Br-, showed the best pigment extraction ability, with a higher putative affinity for azaphilone red pigments; (iii) the back extraction and recovery of the fungal pigments from ionic liquid phases remained the limiting point of the method under our selected conditions for potential industrial applications. Nevertheless, these alternative extraction procedures appeared to be promising ways for the detection of polyketide-based colorants in the submerged cultures of filamentous fungi. |
---|