Cargando…
Deeply Recursive Low- and High-Frequency Fusing Networks for Single Image Super-Resolution
With the development of researches on single image super-resolution (SISR) based on convolutional neural networks (CNN), the quality of recovered images has been remarkably promoted. Since then, many deep learning-based models have been proposed, which have outperformed the traditional SISR algorith...
Autores principales: | Yang, Cheng, Lu, Guanming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766830/ https://www.ncbi.nlm.nih.gov/pubmed/33352901 http://dx.doi.org/10.3390/s20247268 |
Ejemplares similares
-
Deeply-recursive convolutional neural network for Raman spectra identification
por: Zhou, Wei, et al.
Publicado: (2022) -
Super-recursive algorithms
por: Burgin, Mark
Publicado: (2005) -
Efficient Image Super-Resolution via Self-Calibrated Feature Fuse
por: Tan, Congming, et al.
Publicado: (2022) -
Fusing multi-scale information in convolution network for MR image super-resolution reconstruction
por: Liu, Chang, et al.
Publicado: (2018) -
FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution
por: Jiang, Mingfeng, et al.
Publicado: (2021)