Cargando…

Pyrrolidinium Containing Ionic Liquid Electrolytes for Li-Based Batteries

Ionic liquids are potential alternative electrolytes to the more conventional solid-state options under investigation for future energy storage solutions. This review addresses the utilization of IL electrolytes in energy storage devices, particularly pyrrolidinium-based ILs. These ILs offer favorab...

Descripción completa

Detalles Bibliográficos
Autores principales: McGrath, Louise M., Rohan, James F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766901/
https://www.ncbi.nlm.nih.gov/pubmed/33352999
http://dx.doi.org/10.3390/molecules25246002
Descripción
Sumario:Ionic liquids are potential alternative electrolytes to the more conventional solid-state options under investigation for future energy storage solutions. This review addresses the utilization of IL electrolytes in energy storage devices, particularly pyrrolidinium-based ILs. These ILs offer favorable properties, such as high ionic conductivity and the potential for high power drain, low volatility and wide electrochemical stability windows (ESW). The cation/anion combination utilized significantly influences their physical and electrochemical properties, therefore a thorough discussion of different combinations is outlined. Compatibility with a wide array of cathode and anode materials such as LFP, V(2)O(5), Ge and Sn is exhibited, whereby thin-films and nanostructured materials are investigated for micro energy applications. Polymer gel electrolytes suitable for layer-by-layer fabrication are discussed for the various pyrrolidinium cations, and their compatibility with electrode materials assessed. Recent advancements regarding the modification of typical cations such a 1-butyl-1-methylpyrrolidinium, to produce ether-functionalized or symmetrical cations is discussed.