Cargando…
Data Efficient Reinforcement Learning for Integrated Lateral Planning and Control in Automated Parking System
Reinforcement learning (RL) is a promising direction in automated parking systems (APSs), as integrating planning and tracking control using RL can potentially maximize the overall performance. However, commonly used model-free RL requires many interactions to achieve acceptable performance, and mod...
Autores principales: | Song, Shaoyu, Chen, Hui, Sun, Hongwei, Liu, Meicen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766926/ https://www.ncbi.nlm.nih.gov/pubmed/33353153 http://dx.doi.org/10.3390/s20247297 |
Ejemplares similares
-
Hierarchical Trajectory Planning for Narrow-Space Automated Parking with Deep Reinforcement Learning: A Federated Learning Scheme
por: Yuan, Zheng, et al.
Publicado: (2023) -
Model-Based Predictive Control and Reinforcement Learning for Planning Vehicle-Parking Trajectories for Vertical Parking Spaces
por: Shi, Junren, et al.
Publicado: (2023) -
Reinforcement Learning-Based End-to-End Parking for Automatic Parking System
por: Zhang, Peizhi, et al.
Publicado: (2019) -
Model-Based Reinforcement Learning with Automated Planning for Network Management
por: Ordonez, Armando, et al.
Publicado: (2022) -
A Reinforcement Learning Approach to View Planning for Automated Inspection Tasks
por: Landgraf, Christian, et al.
Publicado: (2021)