Cargando…
A Multitask-Aided Transfer Learning-Based Diagnostic Framework for Bearings under Inconsistent Working Conditions
Rolling element bearings are a vital part of rotating machines and their sudden failure can result in huge economic losses as well as physical causalities. Popular bearing fault diagnosis techniques include statistical feature analysis of time, frequency, or time-frequency domain data. These enginee...
Autores principales: | Hasan, Md Junayed, Sohaib, Muhammad, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766951/ https://www.ncbi.nlm.nih.gov/pubmed/33339253 http://dx.doi.org/10.3390/s20247205 |
Ejemplares similares
-
Bearing Fault Diagnosis Using Multidomain Fusion-Based Vibration Imaging and Multitask Learning
por: Hasan, Md Junayed, et al.
Publicado: (2021) -
An Explainable AI-Based Fault Diagnosis Model for Bearings
por: Hasan, Md Junayed, et al.
Publicado: (2021) -
A Hybrid Feature Pool-Based Emotional Stress State Detection Algorithm Using EEG Signals
por: Hasan, Md Junayed, et al.
Publicado: (2019) -
A Novel Pipeline Leak Detection Technique Based on Acoustic Emission Features and Two-Sample Kolmogorov–Smirnov Test
por: Rai, Akhand, et al.
Publicado: (2021) -
A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
por: Sohaib, Muhammad, et al.
Publicado: (2017)