Cargando…
Quantitative Correlation between the Degree of Reaction and Compressive Strength of Metakaolin-Based Geopolymers
For geopolymers (usually composed of unreacted precursor and gel), the compressive strength is controlled by two factors. The first is the degree of reaction, or, equivalently, the amount of gel formed, including any calcium silicate hydrate gel in calcium-containing mixtures. The second factor is t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767034/ https://www.ncbi.nlm.nih.gov/pubmed/33352908 http://dx.doi.org/10.3390/ma13245784 |
_version_ | 1783628861654695936 |
---|---|
author | Chen, Xu Kim, Eric Suraneni, Prannoy Struble, Leslie |
author_facet | Chen, Xu Kim, Eric Suraneni, Prannoy Struble, Leslie |
author_sort | Chen, Xu |
collection | PubMed |
description | For geopolymers (usually composed of unreacted precursor and gel), the compressive strength is controlled by two factors. The first is the degree of reaction, or, equivalently, the amount of gel formed, including any calcium silicate hydrate gel in calcium-containing mixtures. The second factor is the gel composition, generally given by the Si/Al ratio. These two parameters are interrelated for typical silicate-activated metakaolin geopolymers. By separating out effects of Si/Al ratio and degree of reaction, this study quantitatively correlates the degree of reaction with the compressive strength of metakaolin-based geopolymers with and without calcium. Solid-state (29)Si nuclear magnetic resonance (NMR) aided with chemical extractions was used to determine gel amounts and composition for several geopolymer mixtures. The compressive strength was also measured for each mixture at 7 days. Both the increase of Na/Al ratio in mixtures without calcium and addition of external calcium increased the degree of reaction, and compressive strength correlated linearly (R(2) > 0.88) with the degree of reaction. |
format | Online Article Text |
id | pubmed-7767034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77670342020-12-28 Quantitative Correlation between the Degree of Reaction and Compressive Strength of Metakaolin-Based Geopolymers Chen, Xu Kim, Eric Suraneni, Prannoy Struble, Leslie Materials (Basel) Article For geopolymers (usually composed of unreacted precursor and gel), the compressive strength is controlled by two factors. The first is the degree of reaction, or, equivalently, the amount of gel formed, including any calcium silicate hydrate gel in calcium-containing mixtures. The second factor is the gel composition, generally given by the Si/Al ratio. These two parameters are interrelated for typical silicate-activated metakaolin geopolymers. By separating out effects of Si/Al ratio and degree of reaction, this study quantitatively correlates the degree of reaction with the compressive strength of metakaolin-based geopolymers with and without calcium. Solid-state (29)Si nuclear magnetic resonance (NMR) aided with chemical extractions was used to determine gel amounts and composition for several geopolymer mixtures. The compressive strength was also measured for each mixture at 7 days. Both the increase of Na/Al ratio in mixtures without calcium and addition of external calcium increased the degree of reaction, and compressive strength correlated linearly (R(2) > 0.88) with the degree of reaction. MDPI 2020-12-18 /pmc/articles/PMC7767034/ /pubmed/33352908 http://dx.doi.org/10.3390/ma13245784 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Xu Kim, Eric Suraneni, Prannoy Struble, Leslie Quantitative Correlation between the Degree of Reaction and Compressive Strength of Metakaolin-Based Geopolymers |
title | Quantitative Correlation between the Degree of Reaction and Compressive Strength of Metakaolin-Based Geopolymers |
title_full | Quantitative Correlation between the Degree of Reaction and Compressive Strength of Metakaolin-Based Geopolymers |
title_fullStr | Quantitative Correlation between the Degree of Reaction and Compressive Strength of Metakaolin-Based Geopolymers |
title_full_unstemmed | Quantitative Correlation between the Degree of Reaction and Compressive Strength of Metakaolin-Based Geopolymers |
title_short | Quantitative Correlation between the Degree of Reaction and Compressive Strength of Metakaolin-Based Geopolymers |
title_sort | quantitative correlation between the degree of reaction and compressive strength of metakaolin-based geopolymers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767034/ https://www.ncbi.nlm.nih.gov/pubmed/33352908 http://dx.doi.org/10.3390/ma13245784 |
work_keys_str_mv | AT chenxu quantitativecorrelationbetweenthedegreeofreactionandcompressivestrengthofmetakaolinbasedgeopolymers AT kimeric quantitativecorrelationbetweenthedegreeofreactionandcompressivestrengthofmetakaolinbasedgeopolymers AT suraneniprannoy quantitativecorrelationbetweenthedegreeofreactionandcompressivestrengthofmetakaolinbasedgeopolymers AT strubleleslie quantitativecorrelationbetweenthedegreeofreactionandcompressivestrengthofmetakaolinbasedgeopolymers |