Cargando…
Application of Deep and Machine Learning Using Image Analysis to Detect Fungal Contamination of Rapeseed
This paper endeavors to evaluate rapeseed samples obtained in the process of storage experiments with different humidity (12% and 16% seed moisture content) and temperature conditions (25 and 30 °C). The samples were characterized by different levels of contamination with filamentous fungi. In order...
Autores principales: | Przybył, Krzysztof, Wawrzyniak, Jolanta, Koszela, Krzysztof, Adamski, Franciszek, Gawrysiak-Witulska, Marzena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767128/ https://www.ncbi.nlm.nih.gov/pubmed/33352649 http://dx.doi.org/10.3390/s20247305 |
Ejemplares similares
-
Predictive Models of Phytosterol Degradation in Rapeseeds Stored in Bulk Based on Artificial Neural Networks and Response Surface Regression
por: Wawrzyniak, Jolanta, et al.
Publicado: (2022) -
The Effect of Temperature and Moisture Content of Stored Rapeseed on the Phytosterol Degradation Rate
por: Gawrysiak-Witulska, Marzena, et al.
Publicado: (2012) -
Deep and Machine Learning Using SEM, FTIR, and Texture Analysis to Detect Polysaccharide in Raspberry Powders
por: Przybył, Krzysztof, et al.
Publicado: (2021) -
Degradation of Phytosterols During Near-Ambient Drying of Rapeseeds in a Thick Immobile Layer
por: Gawrysiak-Witulska, Marzena, et al.
Publicado: (2012) -
The Use of Image Analysis to Detect Seed Contamination—A Case Study of Triticale
por: Gierz, Łukasz, et al.
Publicado: (2020)