Cargando…
Impact of Feature Choice on Machine Learning Classification of Fractional Anomalous Diffusion
The growing interest in machine learning methods has raised the need for a careful study of their application to the experimental single-particle tracking data. In this paper, we present the differences in the classification of the fractional anomalous diffusion trajectories that arise from the sele...
Autores principales: | Loch-Olszewska, Hanna, Szwabiński, Janusz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767296/ https://www.ncbi.nlm.nih.gov/pubmed/33352694 http://dx.doi.org/10.3390/e22121436 |
Ejemplares similares
-
Detection of Anomalous Diffusion with Deep Residual Networks
por: Gajowczyk, Miłosz, et al.
Publicado: (2021) -
Objective comparison of methods to decode anomalous diffusion
por: Muñoz-Gil, Gorka, et al.
Publicado: (2021) -
Fractional diffusion equations and anomalous diffusion
por: Evangelista, Luiz Roberto, et al.
Publicado: (2018) -
Opinion Evolution in Divided Community
por: Weron, Tomasz, et al.
Publicado: (2022) -
Diffusion-weighted MRI radiomics of spine bone tumors: feature stability and machine learning-based classification performance
por: Gitto, Salvatore, et al.
Publicado: (2022)