Cargando…
Is Environmental and Occupational Particulate Air Pollution Exposure Related to Type-2 Diabetes and Dementia? A Cross-Sectional Analysis of the UK Biobank
Human exposure to particulate air pollution (e.g., PM(2.5)) can lead to adverse health effects, with compelling evidence that it can increase morbidity and mortality from respiratory and cardiovascular disease. More recently, there has also been evidence that long-term environmental exposure to part...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767456/ https://www.ncbi.nlm.nih.gov/pubmed/33371391 http://dx.doi.org/10.3390/ijerph17249581 |
_version_ | 1783628962746859520 |
---|---|
author | Dimakakou, Eirini Johnston, Helinor J. Streftaris, George Cherrie, John W. |
author_facet | Dimakakou, Eirini Johnston, Helinor J. Streftaris, George Cherrie, John W. |
author_sort | Dimakakou, Eirini |
collection | PubMed |
description | Human exposure to particulate air pollution (e.g., PM(2.5)) can lead to adverse health effects, with compelling evidence that it can increase morbidity and mortality from respiratory and cardiovascular disease. More recently, there has also been evidence that long-term environmental exposure to particulate air pollution is associated with type-2 diabetes mellitus (T2DM) and dementia. There are many occupations that may expose workers to airborne particles and that some exposures in the workplace are very similar to environmental particulate pollution. We conducted a cross-sectional analysis of the UK Biobank cohort to verify the association between environmental particulate air pollution (PM(2.5)) exposure and T2DM and dementia, and to investigate if occupational exposure to particulates that are similar to those found in environmental air pollution could increase the odds of developing these diseases. The UK Biobank dataset comprises of over 500,000 participants from all over the UK. Environmental exposure variables were used from the UK Biobank. To estimate occupational exposure both the UK Biobank’s data and information from a job exposure matrix, specifically developed for UK Biobank (Airborne Chemical Exposure–Job Exposure Matrix (ACE JEM)), were used. The outcome measures were participants with T2DM and dementia. In appropriately adjusted models, environmental exposure to PM(2.5) was associated with an odds ratio (OR) of 1.02 (95% CI 1.00 to 1.03) per unit exposure for developing T2DM, while PM(2.5) was associated with an odds ratio of 1.06 (95% CI 0.96 to 1.16) per unit exposure for developing dementia. These environmental results align with existing findings in the published literature. Five occupational exposures (dust, fumes, diesel, mineral, and biological dust in the most recent job estimated with the ACE JEM) were investigated and the risks for most exposures for T2DM and for all the exposures for dementia were not significantly increased in the adjusted models. This was confirmed in a subgroup of participants where a full occupational history was available allowed an estimate of workplace exposures. However, when not adjusting for gender, some of the associations become significant, which suggests that there might be a bias between the occupational assessments for men and women. The results of the present study do not provide clear evidence of an association between occupational exposure to particulate matter and T2DM or dementia. |
format | Online Article Text |
id | pubmed-7767456 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77674562020-12-28 Is Environmental and Occupational Particulate Air Pollution Exposure Related to Type-2 Diabetes and Dementia? A Cross-Sectional Analysis of the UK Biobank Dimakakou, Eirini Johnston, Helinor J. Streftaris, George Cherrie, John W. Int J Environ Res Public Health Article Human exposure to particulate air pollution (e.g., PM(2.5)) can lead to adverse health effects, with compelling evidence that it can increase morbidity and mortality from respiratory and cardiovascular disease. More recently, there has also been evidence that long-term environmental exposure to particulate air pollution is associated with type-2 diabetes mellitus (T2DM) and dementia. There are many occupations that may expose workers to airborne particles and that some exposures in the workplace are very similar to environmental particulate pollution. We conducted a cross-sectional analysis of the UK Biobank cohort to verify the association between environmental particulate air pollution (PM(2.5)) exposure and T2DM and dementia, and to investigate if occupational exposure to particulates that are similar to those found in environmental air pollution could increase the odds of developing these diseases. The UK Biobank dataset comprises of over 500,000 participants from all over the UK. Environmental exposure variables were used from the UK Biobank. To estimate occupational exposure both the UK Biobank’s data and information from a job exposure matrix, specifically developed for UK Biobank (Airborne Chemical Exposure–Job Exposure Matrix (ACE JEM)), were used. The outcome measures were participants with T2DM and dementia. In appropriately adjusted models, environmental exposure to PM(2.5) was associated with an odds ratio (OR) of 1.02 (95% CI 1.00 to 1.03) per unit exposure for developing T2DM, while PM(2.5) was associated with an odds ratio of 1.06 (95% CI 0.96 to 1.16) per unit exposure for developing dementia. These environmental results align with existing findings in the published literature. Five occupational exposures (dust, fumes, diesel, mineral, and biological dust in the most recent job estimated with the ACE JEM) were investigated and the risks for most exposures for T2DM and for all the exposures for dementia were not significantly increased in the adjusted models. This was confirmed in a subgroup of participants where a full occupational history was available allowed an estimate of workplace exposures. However, when not adjusting for gender, some of the associations become significant, which suggests that there might be a bias between the occupational assessments for men and women. The results of the present study do not provide clear evidence of an association between occupational exposure to particulate matter and T2DM or dementia. MDPI 2020-12-21 2020-12 /pmc/articles/PMC7767456/ /pubmed/33371391 http://dx.doi.org/10.3390/ijerph17249581 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dimakakou, Eirini Johnston, Helinor J. Streftaris, George Cherrie, John W. Is Environmental and Occupational Particulate Air Pollution Exposure Related to Type-2 Diabetes and Dementia? A Cross-Sectional Analysis of the UK Biobank |
title | Is Environmental and Occupational Particulate Air Pollution Exposure Related to Type-2 Diabetes and Dementia? A Cross-Sectional Analysis of the UK Biobank |
title_full | Is Environmental and Occupational Particulate Air Pollution Exposure Related to Type-2 Diabetes and Dementia? A Cross-Sectional Analysis of the UK Biobank |
title_fullStr | Is Environmental and Occupational Particulate Air Pollution Exposure Related to Type-2 Diabetes and Dementia? A Cross-Sectional Analysis of the UK Biobank |
title_full_unstemmed | Is Environmental and Occupational Particulate Air Pollution Exposure Related to Type-2 Diabetes and Dementia? A Cross-Sectional Analysis of the UK Biobank |
title_short | Is Environmental and Occupational Particulate Air Pollution Exposure Related to Type-2 Diabetes and Dementia? A Cross-Sectional Analysis of the UK Biobank |
title_sort | is environmental and occupational particulate air pollution exposure related to type-2 diabetes and dementia? a cross-sectional analysis of the uk biobank |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767456/ https://www.ncbi.nlm.nih.gov/pubmed/33371391 http://dx.doi.org/10.3390/ijerph17249581 |
work_keys_str_mv | AT dimakakoueirini isenvironmentalandoccupationalparticulateairpollutionexposurerelatedtotype2diabetesanddementiaacrosssectionalanalysisoftheukbiobank AT johnstonhelinorj isenvironmentalandoccupationalparticulateairpollutionexposurerelatedtotype2diabetesanddementiaacrosssectionalanalysisoftheukbiobank AT streftarisgeorge isenvironmentalandoccupationalparticulateairpollutionexposurerelatedtotype2diabetesanddementiaacrosssectionalanalysisoftheukbiobank AT cherriejohnw isenvironmentalandoccupationalparticulateairpollutionexposurerelatedtotype2diabetesanddementiaacrosssectionalanalysisoftheukbiobank |