Cargando…
pcPromoter-CNN: A CNN-Based Prediction and Classification of Promoters
A promoter is a small region within the DNA structure that has an important role in initiating transcription of a specific gene in the genome. Different types of promoters are recognized by their different functions. Due to the importance of promoter functions, computational tools for the prediction...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767505/ https://www.ncbi.nlm.nih.gov/pubmed/33371507 http://dx.doi.org/10.3390/genes11121529 |
Sumario: | A promoter is a small region within the DNA structure that has an important role in initiating transcription of a specific gene in the genome. Different types of promoters are recognized by their different functions. Due to the importance of promoter functions, computational tools for the prediction and classification of a promoter are highly desired. Promoters resemble each other; therefore, their precise classification is an important challenge. In this study, we propose a convolutional neural network (CNN)-based tool, the pcPromoter-CNN, for application in the prediction of promotors and their classification into subclasses σ70, σ54, σ38, σ32, σ28 and σ24. This CNN-based tool uses a one-hot encoding scheme for promoter classification. The tools architecture was trained and tested on a benchmark dataset. To evaluate its classification performance, we used four evaluation metrics. The model exhibited notable improvement over that of existing state-of-the-art tools. |
---|